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Outline of the talk

I present an action for discretized gravity with spinors as the fundamental

configuration variables. The theory has a Hamiltonian and local gauge

symmetries. Generic solutions represent twisted geometries, and have

curvature – there is a deficit angle around triangles.
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Motivation

LQG boundary states twisted geometries

spinfoam amplitudes Regge geometries general relativity

twisted Regge calculus

?

quantization continuum limit

∪

Tension between LQG kinematics and dynamics

Kinematics: The LQG boundary states represent twisted geometries:

Every tetrahedron has a unique volume, and every triangle has a

unique area, yet there are no unique edge lengths.

Dynamics: Spinfoam gravity provides us with the transition

amplitudes between generic boundary states.

A conceptual tension: We always try to find just Regge gravity in the

semi-classical limit. Yet, our kinematical framework is more general:

Twisted geometries are less restrictive than Regge discretizations.

Key question: Can we formulate the dynamics of discretized gravity

in terms of twisted geometries?
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New action for simplicial gravity in first-order

spin-variables



Plebański principle

The BF action is topological, and determines the symplectic structure of

the theory:

SBF[Σ, A] =
~

2`P
2

∫
M

(
∗ Σαβ − β−1Σαβ

)
∧ Fαβ [A] ≡

∫
M

Παβ ∧ Fαβ . (1)

General relativity follows from the simplicity constraints added to the

action:

Σαβ ∧ Σµν ∝ εαβµν . (2)

With the solutions:

Σαβ =

{
±eα ∧ eβ ,
± ∗ (eα ∧ eβ).

(3)

Notation:

α, β, γ . . . are internal Lorentz indices.

Σαβ is an so(1, 3)-valued two-form.

Aαβ is an SO(1, 3) connection, with Fαβ = dAαβ + Aαµ ∧ Aµβ denoting its
curvature.

eα is the tetrad, diagonalizing the four-dimensional metric g = eα ⊗ eα.

`P
2 = 8π~/Gc3, and β is the Barbero–Immirzi parameter.
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Discretized BF theory with spinors on a lattice

We can write the discretized BF action as a sum over the two-dimensional

simplicial faces f1, f2, . . . :

SBF[Zf1 ,Zf2 , . . . ;Z˜f1 , Z˜f2 , . . . ; ζf1 , ζf2 , . . . ; Λe1 ,Λe2 , . . . ] =
∑
f :faces

Sf

=
∑
f :faces

∮
∂f

[
πfADω

A
f − π˜fAdω˜Af + ζf

(
πfAω

A
f − π˜fAω˜Af )

]
+ cc.

(4)

Notation:

A,B,C, . . . are spinor indices, and cc. denotes complex conjugation.

Each face f carries two twistors: Zf , Z˜f : ∂f → T ' C4
, Z = (π̄A′ , ωA).

ζf : ∂f → C is a Lagrange multiplier imposing the constraint∆f = π˜Aω˜A − πAωA.
D is the covariant differential, ė an edge’s tangent vector: ėyDπA = π̇A + [Λe]

A
Bπ

B
.
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Key ideas of the proof, 1/2

Step 1: Discretize the action:

SBF[Σ, A] =

∫
M

Παβ ∧ Fαβ ≈
∑
f :faces

∫
τf

Παβ

∫
f

Fαβ ≡
∑
f :faces

Sf .

Step 2: Define the smeared flux:

Παβ
f (t) =

∫
τf

dx dy [hγ(t,x,y)]
α
µ[hγ(t,x,y)]

β
ν

[
Πp(x,y)(∂x, ∂y)

]µν
.

Step 3: Employ the non-Abelian Stoke’s theorem:∫
γt

dz h−1
γt(z)

Fγt(z)(∂z, ∂t)hγt(z) = h−1
γt(1)

D

dt
hγt(1),

to eventually find the one-dimensional action:

Sf = −
∫
∂f

dt
[
h−1
γt(1)

D

dt
hγt(1)

]
αβ

Παβ
f (t).
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Key ideas of the proof, 2/2

Step 4: Introduce spinors to diagonalize both holonomies and fluxes:

Παβ
f (t) =

1

2
ε̄A

′B′
ω

(A
f (t)π

B)
f (t) + cc.,

[
hγt
]A
B

= Pexp
(
−
∫
γt

A
)A
B

=
ω˜Af (t)πfB(t)− π˜Af (t)ωfB(t)√

Ef (t)
√
E˜ f (t)

.

We also need the area-matching constraint:

∆f := π˜fAω˜Af − πfAωAf ≡ E˜ f (t)− Ef (t).

Putting the pieces together yields the face action:

Sf [Z,Z˜ , A, ζ] =

=

∫
∂f

dt
[
πA

D

dt
ωA − π˜A d

dt
ω˜A − ζ∆

]
+ cc. (6)
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Linear simplicity constraints

Instead of discretizing the quadratic simplicity constraints

Σαβ ∧ Σµν ∝ εαβµν , (7)

we will use the linear simplicity constraints:

For every tetrahedron Te (dual to an edge e) there exist an internal
future-oriented four-normal nαe such that the fluxes through its four bounding
triangles τf (dual to a face f : e ⊂ ∂f ) annihilate nαe :∫

τf

Σαβn
β
e = 0. (8)

The spinorial parametrization turns the simplicity constraints into the

following complex conditions:

Vf =
i

β + i
πfAω

A
f + cc.

!
= 0, (9a)

Wef = nAA
′

e πfAω̄
f
A′

!
= 0. (9b)
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Adding the simplicity constraints

The simplicity constraints reduce the SO(1, 3) spin connection Aαβ to
the SU(2)n Asthekar–Barbero connection:

Aα = nµ
[1

2
εµν

αρAνρ + βAαµ
]
. (10)

We introduce Lagrange multipliers λ ∈ R and z ∈ C and get the
following constrained action for each face in the discretization:

Sface[Z,Z˜ |ζ, z, λ|A, n] =

∮
∂f

(
πADωA − π˜Adω˜A − ζ(π˜Aω˜A − πAωA)+

− λ

2

( i

β + i
πAω

A + cc.
)
− z nAA

′
πAω̄A′

)
+ cc., (11)

where DπA = dπA +AατABαπB is the SU(2)n covariant differential.

Problem: There is no term in the action that would determine the

t-dependence of the normal nαe along the edges e(t).

We now have to make a proposal.
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Four-dimensional closure constraint

Any proposal for the dynamics of the time normals must respect the

closure constraint at the vertices (four-simplices):

We define the volume-weighted four-normal:

peα = neαVol(e). (12)

At every four simplex we have the closure constraint:∑
outgoing edges e

at v

peα =
∑

incoming edges e
at v

peα. (13)

Notation:

Vol(e) ∝ 2
9nαε

αβµνL1
βL

2
µL

3
ν , with e.g.: L

1
α = −τABαω

f1
A π

f1
B + cc.
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The proposal for the dynamics of the time-normals

Any proposal for the dynamics of the time-normals

- must respect the four-dimensional closure constraint, and

- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Sedge[X, p|N,Vol(e)] =

∫
e

(
pαdXα − N

2

(
pαp

α + Vol2(e)
))
. (14)

We just need an additional boundary term at the vertices:

Svertex[Yv, {Xev}e3v, {vev}e3v] =
∑
e:e3v

(
Y αv −Xα

ev

)
vevα . (15)

Where N is a Lagrange multiplier imposing the mass-shell condition:

C :=
1

2

(
pαp

α + Vol2(e)
)

!
= 0. (16)
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Putting the pieces together – defining the action

Adding the face, edge and vertex contributions gives us a proposal for an

action for discretized gravity in first-order variables:

Sspin-Regge =
∑
f :faces

Sface
[
Zf , Z˜f ∣∣ζf , zf , λf ∣∣A∂f , n∂f ]+

+
∑
e:edges

Sedges
[
Xe, pe

∣∣Ne,Vol(e)
]
+

+
∑

v:vertices

Svertex

[
Yv, {Xev}e3v, {vev}e3v

]
. (17)

Notation:

Zf and Z˜f are the twistors Zf : ∂f → T ' C4
parametrizing the SL(2,C)

holonomy-flux variables.

ζf , λf and zf are Lagrange multipliers imposing the area-matching constraint and
simplicity constraints respectively.

A is the SU(2)n Ashtekar–Barbero connection along the edges of the discretization.

n denotes the time normal of the elementary tetrahedra.

pe is the volume-weighted time-normal, of the tetrahedron dual to the edge e.

Vol(e) denotes the corresponding three-volume.

N is a Lagrange multiplier imposing the mass-shell condition C = 0.
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Hamiltonian formulation, twisted geometries and
curvature



Three immediate tests for the model

1 Is there a Hamiltonian formulation of the dynamics of the theory?

2 What kind of four-dimensional geometries do the equations of

motion generate?

3 Does the model have curvature?

15 / 23



Hamiltonian formulation

The Hamiltonian:

H = AαGα+
∑

f :∂f⊃e

(
ζf∆f + ζ̄f ∆̄f + zfWef + z̄fW̄ef +λfVf

)
+NCe, (18)

generates the t-evolution along the edges of the discretization:

d

dt
ωAf =

{
H,ωAf

}
. (19)

The fundamental Poisson brackets are:

{
peα, X

β
e

}
= δβα,{

πfA, ω
B
f ′
}

= +δff ′δ
B
A ,

{
π̄fA′ , ω̄

B′

f ′
}

= +δff ′δ
B′
A′ ,{

π˜fA, ω˜Bf ′} = −δff ′δBA ,
{
π̄˜fA′ , ω̄˜B′

f ′
}

= −δff ′δB
′

A′ .
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Dirac analysis

- The Hamiltonian preserves all constraints provided zf = 0.
- There are no secondary constraints.

Physical Hamiltonian

Hphys = AαGα +
∑

f :∂f⊃e

(
ζf∆f + ζ̄f ∆̄f + λfVf

)
+NC. (21)

second-class simplicity constraint: Wef = nAA
′

e πfAω̄
f
A′

!
= 0,

first-class simplicity constraint: Vf =
i

β + i
πfAω

A
f + cc.

!
= 0,

area-matching condition (first-class): ∆f = π˜fAω˜Af − πfAω
A
f

!
= 0,

mass-shell condition (first-class): Ce =
1

2

(
peαp

α
e + Vol2(e)

) !
= 0,

SU(2)n Gauß constraint (first-class): Geα =
∑

f :∂f⊃e
τABαω

f
Aπ

f
B + cc.

Notation:

τABα are the SU(2)n generators: [τα, τβ ] = nµεµαβ
ντν .

Vol(e) ∝ 2
9nαε

αβµνL1
βL

2
µL

3
ν , with e.g.: L

1
α = −τABαω

f1
A π

f1
B + cc.
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Twisted geometries

What kind of four-dimensional geometries does the Hamiltonian

generate?

The simplicity constraints guarantee that the

fluxes
∫
τf

Σαβ define planes in internal Minkowski
space.

The Gauß constraint tells us that these planes

close to form a tetrahedron.

The physical Hamiltonian Hphys deforms the

shape of the tetrahedron.

The Hamiltonian generates twisted geometries, the relevant term is the

mass-shell condition:

C =
1

2

(
pαp

α + Vol2
)
. (23)

Vol2 ∝ 2
9
nαε

αβµνL1
βL

2
µL

3
ν preserves the area of the four bounding

triangles, and the volume of the tetrahedron, yet it does not preserve the

tetrahedron’s shape – the Hamiltonian generates a shear.

*E Bianchi, HM Haggard, Bohr-Sommerfeld Quantization of Space, Phys.Rev. D 86 (2012), arXiv:1208.2228.
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Curvature and deficit angles

Inter-tetrahedral angles:

cosh Ξvf = −ηµνneµne
′
ν , with: e ∩ e′ = v, and: e, e′ ⊂ ∂f. (24)

Deficit angle around a triangle:

Ξf :=
∑

v: vertices in f

Ξvf =
2

β2 + 1

∮
∂f

λf . (25)
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Conclusion



Basic ideas

I have proposed an action for discretized gravity

in first-order spin variables.

The action is an integral over the entire system of

edges, an action for a one-dimensional branched

manifold.
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The relevance of the model

The system has a finite-dimensional phase space.

The Hamiltonian is a sum over constraints, and

preserves both first- and second-class constraints.

The Hamiltonian generates twisted geometries,

that appear in the semi-classical limit of loop

quantum gravity.

Going once around a triangle we pick up a deficit

angle, hence the model has curvature.
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