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Outline of the talk

| present an action for discretized gravity with spinors as the fundamental
configuration variables. The theory has a Hamiltonian and local gauge
symmetries. Generic solutions represent twisted geometries, and have
curvature - there is a deficit angle around triangles.
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Motivation

LQG boundary states —— > twisted geometries
2 @]
spinfoam amplitudes ———— Regge geometries —— general relativity

quantization continuum limit

Tension between LQG kinematics and dynamics

m Kinematics: The LQG boundary states represent twisted geometries:
Every tetrahedron has a unique volume, and every triangle has a
unique area, yet there are no unique edge lengths.

m Dynamics: Spinfoam gravity provides us with the transition
amplitudes between generic boundary states.

m A conceptual tension: We always try to find just Regge gravity in the
semi-classical limit. Yet, our kinematical framework is more general:
Twisted geometries are less restrictive than Regge discretizations.

m Key question: Can we formulate the dynamics of discretized gravity
in terms of twisted geometries?
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New action for simplicial gravity in first-order
spin-variables



Plebanski principle

The BF action is topological, and determines the symplectic structure of
the theory:

h

Ser(2, Al = —
BF (2, A 267 /.,

(*zag—ﬁflzaB)AFaﬁ[A]z/ Mag AF*P. (1)
M

General relativity follows from the simplicity constraints added to the

action:
TP AT o P 2)
With the solutions:
tea Aeg,
D (3)
+ % (ea A eg).

Notation:
® «,f,v... areinternal Lorentz indices.
m X%gisanso(l,3)-valued two-form.

m A%gisan SO(1,3) connection, with F*g = dA“3 + A%, A A¥ 5 denoting its
curvature.

m e is the tetrad, diagonalizing the four-dimensional metric g = e, ® e®.
m ¢(p? = 87h/Gc?, and 8 is the Barbero-Immirzi parameter.
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Discretized BF theory with spinors on a lattice

four-simplex

vertexr

We can write the discretized BF action as a sum over the two-dimensional
simplicial faces f1, f2,...:

SerlZZpys 5 25 Zgar 3G Char i By My, ] = Y Sp
f:faces
(4)
= 3§ [mhDuf - thdet + ¢ (ot — mhe)] +ec
f:faces of
Notation:
m A, B,C,... arespinor indices, and cc. denotes complex conjugation.

m Each face f carries two twistors: Z;, Z; : 0f - T~C* Z = (7 ar,s ™).
m (s : 8f — Cis a Lagrange multiplier imposing the constraint Ay = Taw® — maw?.
= D is the covariant differential, ¢ an edge's tangent vector: é_1D74 = 74 + [A.]* gnB.
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Key ideas of the proof, 1/2

m Step 1: Discretize the action:

SBF[Z,A]:/ ap N FP Z/ QB/F“ﬁstf

f:faces f:faces

m Step 2: Define the smeared flux:

157 (¢) :/ da dy [Pyt 2]l t,20)) v (T ) (O, By) ]
Tf

m Step 3: Employ the non-Abelian Stoke's theorem:

/ dz h'yt(z) +(2) (827 at) ve(z) = h'yt(l) dt ’Yt(1>’
Yt

to eventually find the one-dimensional action:

— _ - af
Sf - /(9fdt|: v (1) dt ’Yt(1>:|aﬁnf (t)
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Key ideas of the proof, 2/2

m Step 4: Introduce spinors to diagonalize both holonomies and fluxes:
1 a'B" (A, B
5°(t) = 3¢ Pl t)m P (t) + cc.,

A f A f
h, AB —pPexp(— [ 4 AB _ W Orp(t) — 75 (t)WB(t).
] ( /% ) Er(t),/Er(t)

We also need the area-matching constraint:

A A _
Ag = mhwt — mhwt = Ep(t) — Ef(1).

Putting the pieces together yields the face action:

StlZ,Z,A,¢] =

N face
_ D 4 d 4
: = /Bf dt[m;aw T TAW —CA] + cc. (6)
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Linear simplicity constraints

Instead of discretizing the quadratic simplicity constraints
Ea,(g N E#,, X €EaBuvs (7)
we will use the linear simplicity constraints:

For every tetrahedron T. (dual to an edge e) there exist an internal
future-oriented four-normal ng such that the fluxes through its four bounding
triangles ¢ (dual to a face f: e C df) annihilate ng':

/ Sapnl =0. (8)
Tf

The spinorial parametrization turns the simplicity constraints into the
following complex conditions:

Vi = s 7r£wf +cc. = 0 (9a)
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Adding the simplicity constraints

m The simplicity constraints reduce the SO(1, 3) spin connection A% to
the SU(2),, Asthekar-Barbero connection:

A% =t [%ewamz n ﬂA“M] (10)

m We introduce Lagrange multipliers A € R and z € C and get the
following constrained action for each face in the discretization:

StacelZ, Z|C, 2, N\ A, n] = ?{ (WADwA — radw? — ((maw® — maw™)+
af

Aroi A AAT
5(5+17TA(U —l—cc.) zZn 7rAwA/>—|—cc., 11

where D = drn + A% go7? is the SU(2),, covariant differential.

m Problem: There is no term in the action that would determine the
t-dependence of the normal n along the edges e(t).

= We now have to make a proposal.
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Four-dimensional closure constraint

four-simplex

vertex

Any proposal for the dynamics of the time normals must respect the
closure constraint at the vertices (four-simplices):

We define the volume-weighted four-normal:
pe = ng Vol(e). (12)
At every four simplex we have the closure constraint:

DD D Y (13)

outgoing edges e incoming edges e
at v at v

Notation:
m Vol(e) %naeaﬂ‘“’LgLiLi,with eg: Ll = —TABawil ﬂ'g + cc.
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The proposal for the dynamics of the time-normals

Any proposal for the dynamics of the time-normals
- must respect the four-dimensional closure constraint, and
- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Sedge[ X, p| N, Vol(e)] = / (padXo‘ - %(papa + Volz(e))). (14)

We just need an additional boundary term at the vertices:

Svertex[yva {Xev}eavy {Uev}eav] = Z (Yva - X:v)vgv~ (15)

e:esdv

Where N is a Lagrange multiplier imposing the mass-shell condition:

C = %(papa +Vol*(e)) 0. (16)
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Putting the pieces together - defining the action

Adding the face, edge and vertex contributions gives us a proposal for an
action for discretized gravity in first-order variables:

Sspin-Regge = Z Stace[Z5, Z5|Cry 25, Ap| Aog, nos]+
f:faces

+ Z Sedges [Xe,pe ’Ne, VOI(B)] +

e:edges

+ Z Svertex [Yv, {Xev}53v7 {’UE’U}ES’U}' (1 7)

v:vertices

Notation:
m Z; and Z; are the twistors Z; : f — T ~ C* parametrizing the SL(2,C)
holonomy-flux variables.

m (y, Ay and zy are Lagrange multipliers imposing the area-matching constraint and
simplicity constraints respectively.

Ais the SU(2),, Ashtekar-Barbero connection along the edges of the discretization.
n denotes the time normal of the elementary tetrahedra.
pe is the volume-weighted time-normal, of the tetrahedron dual to the edge e.

Vol(e) denotes the corresponding three-volume.

N is a Lagrange multiplier imposing the mass-shell condition C' = 0.
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Hamiltonian formulation, twisted geometries and
curvature



Three immediate tests for the model

Is there a Hamiltonian formulation of the dynamics of the theory?

What kind of four-dimensional geometries do the equations of
motion generate?

Does the model have curvature?
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Hamiltonian formulation

The Hamiltonian:

H=AGat Y. (cfAerEfA_erszef+2fV_Vef+/\fo)+NCC, (18)
f:0fDe

generates the t-evolution along the edges of the discretization:

iw;‘ ={H,w}}. (19)

The fundamental Poisson brackets are:
{5, X2} =45,

B B - - B’ B’
{W£7wf’}:+§ff’6x47 {ﬂ-,];/vwf'}:+5ff’514’7

{rh,wi} = —0;70%, {70, 0} = —875:6%.
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Dirac analysis

- The Hamiltonian preserves all constraints provided z; = 0.
- There are no secondary constraints.

Physical Hamiltonian

Honys = A%Ga+ Y. (A + T A+ X Vp)+NC. 1)
f:0fDe
second-class simplicity constraint: Weyp = nAA wf@f‘, L 0,
first-class simplicity constraint: Vi = ﬁwfgw? + cc. < 0,

area-matching condition (first-class): A = EQ%? - wgwf Lo,

1
mass-shell condition (first-class):  Ce =3 —(p&p% + Vol (e)) Lo,

SU(2)» GauR constraint (first-class): Z A8 ol wl + ce.

f:0fDe
Notation:

m 74 g, arethe SU(2), generators: [to, 78] = n' € ap” 0.
m Vol(e) x naeo‘ﬁ‘“’LéLiLf’,, withe.g.: L, = —TABan 7711;1 + cc.
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Twisted geometries

What kind of four-dimensional geometries does the Hamiltonian
generate?

m The simplicity constraints guarantee that the
fluxes [ .5 define planes in internal Minkowski
space.

®m The Gaul constraint tells us that these planes
close to form a tetrahedron.

; m The physical Hamiltonian Hpuys deforms the
shape of the tetrahedron.
cd‘zA‘

The Hamiltonian generates twisted geometries, the relevant term is the
mass-shell condition:

1
C= 3 (pap™ + V012). (23)

Vol? o 2nqe*?* Ly L7 LY preserves the area of the four bounding
triangles, and the volume of the tetrahedron, yet it does not preserve the
tetrahedron’s shape - the Hamiltonian generates a shear.

*E Bianchi, HM Haggard, Bohr-Sommerfeld Quantization of Space, Phys.Rev. D 86 (2012), arXiv:1208.2228.
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Curvature and deficit angles

four-simplex

vertex

Inter-tetrahedral angles:
coshZ,f = —n“”nini,, with: ene’ = v, and: e, ¢’ C 9f. (24)

Deficit angle around a triangle:

| = — 2
Epe= 0y _Uffﬁuljgfxf. (25)

v: verticesin f
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Conclusion



Basic ideas

m | have proposed an action for discretized gravity
in first-order spin variables.
m The action is an integral over the entire system of

edges, an action for a one-dimensional branched
manifold.
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The relevance of the model

m The system has a finite-dimensional phase space.
The Hamiltonian is a sum over constraints, and
preserves both first- and second-class constraints.

= The Hamiltonian generates twisted geometries,
that appear in the semi-classical limit of loop
quantum gravity.

m Going once around a triangle we pick up a deficit
angle, hence the model has curvature.
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Thank you for the attention, and thank you for the invitation.
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