Group field theories generating polyhedral complexes

Johannes Thürigen

Max-Planck Institute for Gravitational Physics, Potsdam (Albert-Einstein Institute)

July 17, 2014

Dynamics of LQG: Group field theory (GFT)

Standard GFT: QFT of a field on a group $\phi: G^{\times D} \longrightarrow \mathbb{R}$

$$S[\phi] \ = \ \int [\mathrm{d} g] \; {\color{red} \phi}(g_1) \; {\color{blue} \mathcal{K}}(g_1,g_2) \; {\color{red} \phi}(g_2) + \sum_{i \in I} \lambda_i \int [\mathrm{d} g] \; {\color{blue} \mathcal{V}}_i \big(\{g_e\}_{E_i} \big) \; \prod_{e \in E_i} {\color{red} \phi}(g_e) \; ,$$

Perturbative expansion of state sum = sum over spin foams

$$Z_{GFT} = \int \mathcal{D}\phi \ e^{-S[\phi]} = \sum_{\Gamma} rac{1}{C(\Gamma)} \Big[\prod_{i \in I} (-\lambda_i)^{V_i} \Big] A(\Gamma)$$

GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

- States in canonical LQG labeled by graphs of arbitrary valence
- Covariant theories developed in simplicial setting
- Generalization of spin foams to arbitrary valence exists [KKL '10]
- Slightly more challenging for GFT

GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

- States in canonical LQG labeled by graphs of arbitrary valence
- Covariant theories developed in simplicial setting
- Generalization of spin foams to arbitrary valence exists [KKL '10]
- Slightly more challenging for GFT

Goal here:

- Define the general class of combinatorial complexes relevant for LQG and Spin Foams
- Discuss equivalent diagrammatic representations for them
- Present two types of GFTs generating those in the perturbative sum

GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

- States in canonical LQG labeled by graphs of arbitrary valence
- Covariant theories developed in simplicial setting
- Generalization of spin foams to arbitrary valence exists [KKL '10]
- Slightly more challenging for GFT

Goal here:

- Define the general class of combinatorial complexes relevant for LQG and Spin Foams
- Discuss equivalent diagrammatic representations for them
- Present two types of GFTs generating those in the perturbative sum

Caveat: Focus here on (dual) polyhedral 2-complexes (just polygons)

"Combinatorial complexes = complexes of abstract polytopes"

"Combinatorial complexes = complexes of abstract polytopes"

An abstract *n*-polytope is a poset *P* [McMullen,Schulte '02]

(P1) P contains a least and greatest face f_{-1} , f_n .

4 / 13

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) P is strongly connected (sequence of faces)

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) P is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1, ..., n-1 (for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) P is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1, ..., n-1 (for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) *P* is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1, ..., n-1(for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) *P* is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1, ..., n-1 (for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)
 - more general than piecewise linear (e.g. 11-cell)

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) *P* is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1,...,n-1 (for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)
 - more general than piecewise linear (e.g. 11-cell)
 - dual polytope: invert partial order

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) P is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i=2,\ i=1,..,n-1$ (for f< g of dimension i-1 and i+1 there are exactly k_i $i\text{-}faces\ h$ in P such that f< h< g)
 - more general than piecewise linear (e.g. 11-cell)
 - dual polytope: invert partial order

"Combinatorial complexes = complexes of abstract polytopes"

- (P1) P contains a least and greatest face f_{-1} , f_n .
- (P2) Each maximal chain has length n+1
- (P3) P is strongly connected (sequence of faces)
- (P4) Homogeneity degrees $k_i = 2$, i = 1, ..., n-1 (for f < g of dimension i-1 and i+1 there are exactly k_i i-faces h in P such that f < h < g)
 - more general than piecewise linear (e.g. 11-cell)
 - dual polytope: invert partial order
 - boundary is a closed manifold \rightarrow generalize!

"Combinatorial complexes = complexes of abstract polytopes"

An abstract polyhedral n-complex is a poset P

- (P1) P contains least and greatest face f_{-1} , f_{n+1} .
- (P2) Each maximal chain has length n+2
- (P3) (P is strongly connected)
- (P4') Homogeneity degrees $k_i = 2$, i = 1, ..., n-1
 - more general than piecewise linear (e.g. 11-cell)
 - dual polytope branching possible!

"Combinatorial complexes = complexes of abstract polytopes"

A generalized abstract polyhedral *n*-complex is a poset

- (P1) P contains least and greatest face f_{-1} , f_{n+1} .
- (P2) Each maximal chain has length n+2
- (P3) (P is strongly connected)
- (P4") Face degree $k_i^f \in \{1, 2\}, i = 1, ..., n 1$
 - more general than piecewise linear (e.g. 11-cell)
 - dual polytope branching possible!

- finite abstract 2-polytopes are polygons
- alternative representation: stranded diagrams (faces represented by strands)

- finite abstract 2-polytopes are polygons
- alternative representation: stranded diagrams (faces represented by strands)

- finite abstract 2-polytopes are polygons
- alternative representation: stranded diagrams (faces represented by strands)
- subdivision → edges/faces represented by vertices

- finite abstract 2-polytopes are polygons
- alternative representation: stranded diagrams (faces represented by strands)
- subdivision → edges/faces represented by vertices
- subdivided cells adjacent to bulk vertex define spin foam atoms

Atomic decomposition

A spin foam atom consists of

- a bulk vertex v
- boundary vertices $\overline{\mathcal{V}} = \{\overline{v}_i, ...\}$, isomorphic to bulk edges $(v\overline{v}_i)$
- bisection vertices $\widehat{\mathcal{V}} = \{\widehat{\mathbf{v}}_{ij}, ...\}$, isomorphic to face wedges $(\mathbf{v}\overline{\mathbf{v}}_i\widehat{\mathbf{v}}_{ij}\overline{\mathbf{v}}_j)$
- boundary (half)edges $(\bar{v}_i\hat{v}_{ij}), (\bar{v}_j\hat{v}_{ij})$

Atomic decomposition

A spin foam atom consists of

- a bulk vertex v
- boundary vertices $\overline{\mathcal{V}} = \{\overline{v}_i, ...\}$, isomorphic to bulk edges $(v\overline{v}_i)$
- bisection vertices $\widehat{\mathcal{V}} = \{\widehat{\mathbf{v}}_{ij}, ...\}$, isomorphic to face wedges $(\mathbf{v}\overline{\mathbf{v}}_i\widehat{\mathbf{v}}_{ij}\overline{\mathbf{v}}_i)$
- boundary (half)edges $(\bar{v}_i \hat{v}_{ij}), (\bar{v}_j \hat{v}_{ij})$

interpretation as dual to (local) D-polytope possible, but not unique

Atomic decomposition

A spin foam atom consists of

- a bulk vertex v
- boundary vertices $\overline{V} = {\overline{v}_i, ...}$, isomorphic to bulk edges $(v\overline{v}_i)$
- bisection vertices $\widehat{\mathcal{V}} = \{\widehat{\mathbf{v}}_{ij}, ...\}$, isomorphic to face wedges $(\mathbf{v}\overline{\mathbf{v}}_i\widehat{\mathbf{v}}_{ij}\overline{\mathbf{v}}_i)$
- boundary (half)edges $(\bar{v}_i \hat{v}_{ij}), (\bar{v}_j \hat{v}_{ij})$

interpretation as dual to (local) D-polytope possible, but not unique

Spin foam atoms are isomorphic to bisected closed graphs $(cf. [KKL^{+}10, KLP^{+}12])$

(which are isomorphic to closed graphs)

 Spin foams are bondings of atoms along patches

- Spin foams are bondings of atoms along patches
- GFT: Wick contractions of fields $\phi(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_n})$

- Spin foams are bondings of atoms along patches
- GFT: Wick contractions of fields $\phi(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_n})$

- Spin foams are bondings of atoms along patches
- GFT: Wick contractions of fields $\phi(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_n})$
- Boundary given by patches which are not bonded/ by deletion of internal (closed) strands

7 / 13

- Spin foams are bondings of atoms along patches
- GFT: Wick contractions of fields φ(g_{v̄v̂1},..,g_{v̄v̂n})
- Boundary given by patches which are not bonded/ by deletion of internal (closed) strands

Any generalized polyhedral (2-)complex has a decomposition into atoms, and equivalently is a bonding of atoms

- Spin foams are bondings of atoms along patches
- GFT: Wick contractions of fields $\phi(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_n})$
- Boundary given by patches which are not bonded/ by deletion of internal (closed) strands

Any generalized polyhedral (2-)complex has a decomposition into atoms, and equivalently is a bonding of atoms

All of this works for generalized polyhedral complexes of arbitrary dimension

 No obstacle for GFT of polyhedral interactions with simplicial boundary

8 / 13

- No obstacle for GFT of polyhedral interactions with simplicial boundary
- Important: criteria, analytical/numerical control

- No obstacle for GFT of polyhedral interactions with simplicial boundary
- Important: criteria, analytical/numerical control
- Polytopes effectively generated anyway:
 Ex.: Uncoloring of colored GFT (bipartite simplex gluings) [Bonzom, Gurau, Rivasseau '12]

- No obstacle for GFT of polyhedral interactions with simplicial boundary
- Important: criteria, analytical/numerical control
- Polytopes effectively generated anyway:
 Ex.: Uncoloring of colored GFT (bipartite simplex gluings) [Bonzom, Gurau, Rivasseau '12]
- Decomposition generalizes to GFT without colors: Any regular boundary atoms generated by simplicial interaction

- No obstacle for GFT of polyhedral interactions with simplicial boundary
- Important: criteria, analytical/numerical control
- Polytopes effectively generated anyway:
 Ex.: Uncoloring of colored GFT (bipartite simplex gluings) [Bonzom, Gurau, Rivasseau '12]
- Decomposition generalizes to GFT without colors: Any regular boundary atoms generated by simplicial interaction

Prop.: Any atom with regular boundary graph can be decomposed into simplicial atoms

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

Extend field content $\phi_{(I)}: G^{\times I} \longrightarrow \mathbb{R}$

$$S[\{\phi_{(l)}\}] = \sum_{l} \int [\mathrm{d}g] \frac{\phi_{(l)}(g_1) \mathcal{K}_{(l)}(g_1, g_2) \phi_{(l)}(g_2)}{\phi_{(l)}(g_2)} + \sum_{i \in l} \lambda_i \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \frac{\phi_{(l)}(g_{\bar{v}})}{\phi_{(l)}(g_{\bar{v}})}$$

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

Extend field content $\phi_{(I)}: G^{\times I} \longrightarrow \mathbb{R}$

$$S[\{\phi_{(l)}\}] = \sum_{l} \int [\mathrm{d}g] \frac{\phi_{(l)}(g_1) \mathcal{K}_{(l)}(g_1, g_2) \phi_{(l)}(g_2)}{\phi_{(l)}(g_2)} + \sum_{i \in l} \lambda_i \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \frac{\phi_{(l)}(g_{\bar{v}})}{\phi_{(l)}(g_{\bar{v}})}$$

extension to D-polytopes not specified

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

$$S[\{\phi_{(l)}\}] = \sum_{l} \int [\mathrm{d}g] \frac{\phi_{(l)}(g_1) \mathcal{K}_{(l)}(g_1, g_2) \phi_{(l)}(g_2)}{\phi_{(l)}(g_2)} + \sum_{i \in l} \lambda_i \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \frac{\phi_{(l)}(g_{\bar{v}})}{\phi_{(l)}(g_{\bar{v}})}$$

- extension to *D*-polytopes not specified
- infinite field species $I \in \mathbb{N}$ formally possible

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

$$S[\{\phi_{(l)}\}] = \sum_{l} \int [\mathrm{d}g] \phi_{(l)}(g_1) \mathcal{K}_{(l)}(g_1,g_2) \phi_{(l)}(g_2) + \sum_{i \in I} \lambda_i \int [\mathrm{d}g] \mathcal{V}_i(\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \phi_{(l)}(g_{\bar{v}})$$

- extension to *D*-polytopes not specified
- infinite field species $I \in \mathbb{N}$ formally possible
- GFT generating known Spin Foams [KKL '10]

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli '01]

$$S[\{\phi_{(l)}\}] = \sum_{l} \int [\mathrm{d}g] \phi_{(l)}(g_1) \mathcal{K}_{(l)}(g_1,g_2) \phi_{(l)}(g_2) + \sum_{i \in I} \lambda_i \int [\mathrm{d}g] \mathcal{V}_i(\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \phi_{(l)}(g_{\bar{v}})$$

- extension to *D*-polytopes not specified
- infinite field species $I \in \mathbb{N}$ formally possible
- GFT generating known Spin Foams [KKL '10]
- practical usefullness?

Virtual edges

Correspondence to regular graphs

- *k* odd: Any graph can be obtained from a *k*-regular graph by contraction/deletion of edges labeled as virtual
- k even: Any graph with even valencies

Advantage: Only patches with fixed valency needed!

Fields with indices $m_{\bar{v}\hat{v}}=0,1,..,M$: $\phi_{m_{\bar{v}}}(g_{\bar{v}})=\phi_{m_{\bar{v}\hat{v}_1},...,m_{\bar{v}\hat{v}_D}}(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_D})$

Meaning: edge physical m=0, virtual m>1

Fields with indices $m_{\bar{v}\hat{v}} = 0, 1, ..., M$: $\phi_{m_{\bar{v}}}(g_{\bar{v}}) = \phi_{m_{\bar{v}\hat{v}_1}, ..., m_{\bar{v}\hat{v}_D}}(g_{\bar{v}\hat{v}_1}, ..., g_{\bar{v}\hat{v}_D})$

Meaning: edge physical m = 0, virtual m > 1

$$S[\phi] = \sum_{m_1, m_2} \int [\mathrm{d}g] \frac{\phi_{m_1}(g_1) \mathcal{K}(g_1, g_2) \mathcal{K}^{(M)}_{m_1, m_2} \frac{\phi_{m_2}(g_2)}{\phi_{m_2}(g_2)}$$

$$+ \sum_{i \in I} \lambda_i \sum_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \int [\mathrm{d}g] \mathcal{V}_i \big(\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i} \big) \mathcal{V}^{(M)}_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}_i}} \prod_{\bar{v} \in \overline{\mathcal{V}}_i} {\color{red}\phi}(g_{\bar{v}})$$

Fields with indices $m_{\bar{v}\hat{v}}=0,1,..,M$: $\phi_{m_{\bar{v}}}(g_{\bar{v}})=\phi_{m_{\bar{v}\hat{v}_1},...,m_{\bar{v}\hat{v}_D}}(g_{\bar{v}\hat{v}_1},...,g_{\bar{v}\hat{v}_D})$

Meaning: edge physical m = 0, virtual m > 1

$$\begin{split} S[\phi] &= \sum_{m_1, m_2} \int [\mathrm{d}g] \frac{\phi_{m_1}(g_1) \mathcal{K}(g_1, g_2) \mathcal{K}^{(M)}_{m_1, m_2} \phi_{m_2}(g_2)}{+ \sum_{i \in I} \lambda_i \sum_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \mathcal{V}^{(M)}_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \frac{\phi}{}(g_{\bar{v}}) \end{split}$$

• using a matrix A, $\lim_{M\to\infty}\frac{1}{M}\operatorname{Tr} A^q=\delta_{q,2}$:

$$\mathcal{K}_{m_1m_2}^{(M)} = \prod_{i=1}^{D} \mathcal{K}_{m_{1,i}m_{2,i}}^{(M)} = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}_{m_{1,i}m_{2,i}}^{q,2}$$

Fields with indices $m_{\bar{v}\hat{v}} = 0, 1, .., M$: $\phi_{m_{\bar{v}}}(g_{\bar{v}}) = \phi_{m_{\bar{v}\hat{v}_1}, ..., m_{\bar{v}\hat{v}_D}}(g_{\bar{v}\hat{v}_1}, ..., g_{\bar{v}\hat{v}_D})$

Meaning: edge physical m = 0, virtual m > 1

$$\begin{split} S[\phi] &= \sum_{m_1, m_2} \int [\mathrm{d}g] \phi_{m_1}(g_1) \mathcal{K}(g_1, g_2) \mathcal{K}^{(M)}_{m_1, m_2} \phi_{m_2}(g_2) \\ &+ \sum_{i \in I} \lambda_i \sum_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \mathcal{V}^{(M)}_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \phi(g_{\bar{v}}) \end{split}$$

• All physical quantities in the limit $\lim_{M\to\infty}$

Fields with indices $m_{\bar{v}\hat{v}} = 0, 1, .., M$: $\phi_{m_{\bar{v}}}(g_{\bar{v}}) = \phi_{m_{\bar{v}\hat{v}_1}, ..., m_{\bar{v}\hat{v}_D}}(g_{\bar{v}\hat{v}_1}, ..., g_{\bar{v}\hat{v}_D})$

Meaning: edge physical m = 0, virtual m > 1

$$S[\phi] = \sum_{m_1, m_2} \int [\mathrm{d}g] \frac{\phi_{m_1}(g_1) \mathcal{K}(g_1, g_2) \mathcal{K}_{m_1, m_2}^{(M)} \phi_{m_2}(g_2)}{+ \sum_{i \in I} \lambda_i \sum_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}} \int [\mathrm{d}g] \mathcal{V}_i (\{g_{\bar{v}}\}_{\overline{\mathcal{V}}_i}) \mathcal{V}_{\{m_{\bar{v}}\}_{\overline{\mathcal{V}}}}^{(M)} \prod_{\bar{v} \in \overline{\mathcal{V}}_i} \phi(g_{\bar{v}})}$$

• using a matrix A, $\lim_{M\to\infty} \frac{1}{M} Tr A^q = \delta_{q,2}$: $\mathcal{K}_{m_1m_2}^{(M)} = \prod_{i=1}^D \mathcal{K}_{m_1,i}^{(M)} = \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}_{m_1,m_2}$

• All physical quantities in the limit $\lim_{M\to\infty}$

Result: Virtual edges are not dynamical, propagation as composite objects

Gravitational models, dually weighted

No obstacle for including the established amplitudes

Ex.: EPRL *edge operator* on edge \bar{v} :

$$\mathcal{K}(g_{v_1\bar{v}},g_{v_2\bar{v}}) = \int_{G^{\times 2}} \mathrm{d}h_{v_1\bar{v}} \mathrm{d}h_{v_2\bar{v}} \prod_{(\bar{v}\hat{v})} \sum_{J_{\hat{v}} \in \mathcal{J}} \mathrm{tr}_{J_{\hat{v}}} \left(g_{v_1\bar{v}\hat{v}} h_{v_1\bar{v}}^{-1} \mathcal{S}_{J_{\hat{v}},N_{\bar{v}}} h_{v_2\bar{v}} g_{v_2\bar{v}\hat{v}}^{-1} \right)$$

 $(\mathcal{S}_{J,N} \text{ simplicity operator, } \mathcal{J} \text{ set of } \gamma\text{-simple reps of } \mathfrak{g}=\mathfrak{so}(4)\cong\mathfrak{su}(2)_+ imes\mathfrak{su}(2)_-)$

- imposes simplicity on "triangulated" atom
- alternative: trivial factor $\delta(g_{v_1\bar{v}\hat{v}}h_{v_1\bar{v}}^{-1})\delta(h_{v_2\bar{v}}g_{v_2\bar{v}\hat{v}}^{-1})$ on virtual links
- modification of geometricity for higher valency?

Conclusions

- combinatorial compatibility of any LQG and GFT shown
- higher-valent GFT models: multi-species, dual weighting
- precise understanding of generated complexes

Conclusions

- combinatorial compatibility of any LQG and GFT shown
- higher-valent GFT models: multi-species, dual weighting
- precise understanding of generated complexes

Stage is set to analyze these models

- effective interactions, relevant operators
- ...

(though from a QFT perspective the generalization seems rather unnecessary and complicated)