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-
Dynamics of LQG: Group field theory (GFT)

Standard GFT: QFT of a field on a group ¢ : G*P — R

Slg] = / [dg] 6(e1) K(g1. 22) d(22) + Y Ai / [de] Vi({e-}e) [] ¢(ee)

iel eckE;

= 3
S T

Perturbative expansion of state sum = sum over spin foams

Zerr = /D¢> ekl = Zr: C(lr) [H(—N)‘”’}A(F)

i€l
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GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

States in canonical LQG labeled by graphs of arbitrary valence
Covariant theories developed in simplicial setting

Generalization of spin foams to arbitrary valence exists [« 19

Slightly more challenging for GFT
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Apparent difference between canonical and covariant approaches to LQG:

@ States in canonical LQG labeled by graphs of arbitrary valence
@ Covariant theories developed in simplicial setting
@ Generalization of spin foams to arbitrary valence exists [k 19

@ Slightly more challenging for GFT
Goal here:

@ Define the general class of combinatorial complexes relevant for LQG and
Spin Foams

@ Discuss equivalent diagrammatic representations for them

@ Present two types of GFTs generating those in the perturbative sum
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GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

@ States in canonical LQG labeled by graphs of arbitrary valence
@ Covariant theories developed in simplicial setting
@ Generalization of spin foams to arbitrary valence exists [« 19

@ Slightly more challenging for GFT
Goal here:

@ Define the general class of combinatorial complexes relevant for LQG and
Spin Foams

@ Discuss equivalent diagrammatic representations for them

@ Present two types of GFTs generating those in the perturbative sum

Caveat: Focus here on (dual) polyhedral 2-complexes (just polygons)
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Mathematical background: Abstract polyhedral Complexes

" Combinatorial complexes = complexes of abstract polytopes”

An abstract n-polytope is a poset P mcmulien Schute '02]
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(P1) P contains a least and greatest face f_1, f,.

(P2) Each maximal chain has length n+ 1

(P3) P is strongly connected (sequence of faces)
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Mathematical background: Abstract polyhedral Complexes

" Combinatorial complexes = complexes of abstract polytopes”

An abstract n-polytope is a poset P mcmuiien Schulte ‘02]
P1
P2
P3
P4

P contains a least and greatest face f_q, f,.
Each maximal chain has length n+41

(P1)
(P2)
(P3) P is strongly connected (sequence of faces)
(P4) Homogeneity degrees k; =2, i=1,.,n—1
(for f < g of dimension i-1 and i+1 there are exactly

ki i-faces h in P such that f < h < g)

v
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@ more general than piecewise linear (e 11-cen
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@ more general than piecewise linear (e 11-cen

@ dual polytope: invert partial order
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" Combinatorial complexes = complexes of abstract polytopes”
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@ more general than piecewise linear (eg 11-cen

@ dual polytope: invert partial order
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Mathematical background: Abstract polyhedral Complexes

" Combinatorial complexes = complexes of abstract polytopes”

An
(P1
(P2
(P3
(P4

abstract n-polytope is a poset P mcmulien Schulte ‘02]
P contains a least and greatest face f_1, f,.

)

) Each maximal chain has length n+ 1

) P is strongly connected (sequence of faces)
)

Homogeneity degrees k; =2, i=1,..,n—1
(for f < g of dimension i-1 and i+1 there are exactly
ki i-faces h in P such that f < h < g)

v

@ more general than piecewise linear (eg 11-cen

@ dual polytope: invert partial order

@ boundary is a closed manifold — generalize!
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Mathematical background: Abstract polyhedral Complexes

" Combinatorial complexes = complexes of abstract polytopes”

An abstract polyhedral n-complex is a poset P

P contains least and greatest face f_1, fui1.

(P1)

(P2) Each maximal chain has length n + 2
(P3) (P is strongly connected)

(P4)

Homogeneity degrees k; =2, i=1,..,n—1

@ more general than piecewise linear (eg. 11-cen

o dual-pelytepe branching possible!
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Mathematical background: Abstract polyhedral Complexes

" Combinatorial complexes = complexes of abstract polytopes”

A generalized abstract polyhedral n-complex is a poset

P1) P contains least and greatest face f_1, fi1.

P2) Each maximal chain has length n + 2

(
(
(P3) (P is strongly connected)
P

(P4") Face degree kf € {1,2},i=1,.,n—1

@ more general than piecewise linear (g 11-cen)

o dual-pelytepe branching possible!
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Representations of Polyhedral 2-complexes

LQG/SF: 2-complexes, boundary 1-complexes
o finite abstract 2-polytopes are polygons

@ alternative representation: stranded diagrams
(faces represented by strands)
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Representations of Polyhedral 2-complexes

LQG/SF: 2-complexes, boundary 1-complexes “
o finite abstract 2-polytopes are polygons '.
@ alternative representation: stranded diagrams

(faces represented by strands)

@ subdivision — edges/faces represented by
vertices

v
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Representations of Polyhedral 2-complexes

LQG/SF: 2-complexes, boundary 1-complexes “
o finite abstract 2-polytopes are polygons '.
@ alternative representation: stranded diagrams

(faces represented by strands)

@ subdivision — edges/faces represented by
vertices

@ subdivided cells adjacent to bulk vertex define
spin foam atoms

y
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Atomic decomposition

A spin foam atom consists of EA

@ a bulk vertex v ’

e boundary vertices V = {7, ...},
isomorphic to bulk edges (vv;)

e bisection vertices V = {Uj, ...},

isomorphic to face wedges (vv;¥;V;) U
@ boundary (half)edges (V:V;), (V) \) /<
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|
Atomic decomposition

A spin foam atom consists of
@ a bulk vertex v
e boundary vertices V = {7, ...},
isomorphic to bulk edges (v;)

o bisection vertices 1V = {Uj, ...},

isomorphic to face wedges (vv;¥;V;)

e boundary (half)edges (V:V;), (V)
interpretation as dual to (local) D-polytope
possible, but not unique
Spin foam atoms are isomorphic to bisected closed
graphs (cf. [KKL '10, KLP "12])

(which are isomorphic to closed graphs)
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Foams as molecules from atoms

@ Spin foams are bondings of atoms
along patches
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o oleva. - &,)
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Foams as molecules from atoms

@ Spin foams are bondings of atoms
along patches

o GFT: Wick contractions of fields
(gvoys - 8v0,)
@ Boundary given by patches which

are not bonded/ by deletion of
internal (closed) strands

.
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Foams as molecules from atoms

@ Spin foams are bondings of atoms
along patches

@ GFT: Wick contractions of fields
¢(g9\71? oy gV\A/n)

@ Boundary given by patches which
are not bonded/ by deletion of
internal (closed) strands

K‘ Any generalized polyhedral (2-)complex
- >4 o has a decomposition into atoms, and

equivalently is a bonding of atoms
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Foams as molecules from atoms

@ Spin foams are bondings of atoms
along patches

o GFT: Wick contractions of fields
o(&vr» - 81,)

@ Boundary given by patches which

are not bonded/ by deletion of
internal (closed) strands

' Any generalized polyhedral (2-)complex
has a decomposition into atoms, and
. . S equivalently is a bonding of atoms

All of this works for generalized polyhedral
. complexes of arbitrary dimension
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|
Generalizing the combinatorics of simplicial GFT

@ No obstacle for GFT of polyhedral
interactions with simplicial boundary
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Generalizing the combinatorics of simplicial GFT

@ No obstacle for GFT of polyhedral
interactions with simplicial boundary

R SR R

e Important: criteria, analytical /numerical > 2% N2 2.
control N T /L
[Ny 2

@ Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [gonzom, Gurau, Rivasseau '12]
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|
Generalizing the combinatorics of simplicial GFT

@ No obstacle for GFT of polyhedral
interactions with simplicial boundary

e Important: criteria, analytical/numerical T e
control SIS

o Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
Simp|eX g|uingS) [Bonzom, Gurau, Rivasseau '12]

@ Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

Prop.: Any atom with regular boundary graph can
be decomposed into simplicial atoms J
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Multi-species GFT

Straightforward generalization to irregular boundary graphs: (reisenberger, Rovelii ‘1]

Extend field content ¢ : G —R
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Multi-species GFT

Straightforward generalization to irregular boundary graphs: (reisenberger, Rovelii ‘1]

Extend field content ¢ : G*/ — R

S[{on} = Z/[dg]¢</ g1)Key (g1, 82)00(82) + > A /[dg]V {ewdv,) T1 ¢nev)

iel ve

I

H

@ extension to D-polytopes not specified
@ infinite field species | € N formally possible
@ GFT generating known Spin Foams [kkL ‘19

@ practical usefullness?
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Virtual edges

Correspondence to regular graphs

@ k odd: Any graph can be obtained from a k-regular graph by
contraction /deletion of edges labeled as virtual

@ k even: Any graph with even valencies

Advantage: Only patches with fixed valency needed!
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Dually weighted GFT

Fields with indices my; =0,1,..,M: ¢m,(gv) = ¢’"W1v~-v’"WD (goins s 8oip)

Meaning: edge physical m =0, virtual m > 1

Johannes Thiirigen (AEIl Potsdam) Polyhedral GFT July 17, 2014 11 /13



|
Dually weighted GFT
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Meaning: edge physical m = 0, virtual m > 1

Sl = 3 [ [eglom (0K er, 22K o (e2)

my,m2
M
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Fields with indices myy = 0,1,.., M: ¢m;(87) = Pmyy, .....mys, (8701, - Go9p)

Meaning: edge physical m = 0, virtual m > 1

Sl = 3 [ [eglom (0K er, 22K o (e2)

my,mp
+30 S [eviltenty)vin, TT o)
iel {mv}v vev;

@ using a matrix A, limy—co 1 THAY = 642
M o et (100
’lem2 - Hi:l ’le,imZ,f - 0 A
my jmy i
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Dually weighted GFT

Fields with indices myy = 0,1,.., M: @m;(87) = Pmyoy.,....mo0,, (8701, -, &o9p)

Meaning: edge physical m = 0, virtual m > 1

Sl= 3 [10elom (€K (g1, 220K bmle2) —_—

: 5
my,my . . H
N

YN Y [ i, o A~ ——

iel {my}5> vEV;
. . . 1 M —
@ using a matrix A, limy oo 77 TPAY = d4,2:
M) o ey (10
Kinimy, = i1 K img ; = ( 0 A >m . 7< —_—
1,im2 ——
———

@ All physical quantities in the limit limy_, o
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Dually weighted GFT

Fields with indices myy = 0,1,.., M: ¢m;(87) = Pmyo, .....mys, (8701, -+ Go9p)

Meaning: edge physical m =0, virtual m > 1

——
Sl = Y [ ldglom(e)k(en e)Kmom(es) .
my,my . . :
- ‘mans@Enns®
M . ——
0 Y [ueiltetevin,, Mo /7~ ——=
iel {moty ey
M — oo
@ using a matrix A, limy—co o THAY = &g.2:
M D M 1 0
’Csﬂlgﬂz = Hi:l ,C(ml,)/‘mz,/‘ = ( 0 A ) % _‘_'
my ima i ——
———

@ All physical quantities in the limit limy_, o

Result: Virtual edges are not dynamical, propagation as composite objects
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Gravitational models, dually weighted

No obstacle for including the established amplitudes

Ex.: EPRL edge operator on edge v:

’C(gvlvangV) :/ dhvlvdhvsz Z tI'J gvlvv Vv SJ ,Ny vzvgv;}',f,)
Gx2 (90) heT

(Ss,n simplicity operator, J set of y—simple reps of g = s0(4) = su(2); X su(2)-)

@ imposes simplicity on "triangulated” atom

—1
viv

@ alternative: trivial factor §(gv,voh )5(hV2vngv ) on virtual links

@ modification of geometricity for higher valency?
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Conclusions

@ combinatorial compatibility of any LQG and GFT shown
@ higher-valent GFT models: multi-species, dual weighting

@ precise understanding of generated complexes
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Conclusions

@ combinatorial compatibility of any LQG and GFT shown
@ higher-valent GFT models: multi-species, dual weighting

@ precise understanding of generated complexes

Stage is set to analyze these models

o effective interactions, relevant operators

(though from a QFT perspective the generalization seems rather unnecessary and
complicated)
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