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Dynamics of LQG: Group field theory (GFT)

Standard GFT: QFT of a field on a group φ : G×D −→ R

S [φ] =

∫
[dg ] φ(g1) K(g1, g2) φ(g2) +

∑
i∈I

λi

∫
[dg ] V i

(
{ge}Ei

) ∏
e∈Ei

φ(ge) ,

Perturbative expansion of state sum = sum over spin foams

ZGFT =

∫
Dφ e−S[φ] =

∑
Γ

1

C (Γ)

[∏
i∈I

(−λi )Vi

]
A(Γ)
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GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

States in canonical LQG labeled by graphs of arbitrary valence

Covariant theories developed in simplicial setting

Generalization of spin foams to arbitrary valence exists [KKL ’10]

Slightly more challenging for GFT
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States in canonical LQG labeled by graphs of arbitrary valence

Covariant theories developed in simplicial setting

Generalization of spin foams to arbitrary valence exists [KKL ’10]

Slightly more challenging for GFT

Goal here:

Define the general class of combinatorial complexes relevant for LQG and
Spin Foams

Discuss equivalent diagrammatic representations for them

Present two types of GFTs generating those in the perturbative sum
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GFT for arbitrary graphs?

Apparent difference between canonical and covariant approaches to LQG:

States in canonical LQG labeled by graphs of arbitrary valence

Covariant theories developed in simplicial setting

Generalization of spin foams to arbitrary valence exists [KKL ’10]

Slightly more challenging for GFT

Goal here:

Define the general class of combinatorial complexes relevant for LQG and
Spin Foams

Discuss equivalent diagrammatic representations for them

Present two types of GFTs generating those in the perturbative sum

Caveat: Focus here on (dual) polyhedral 2-complexes (just polygons)
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Mathematical background: Abstract polyhedral complexes

”Combinatorial complexes = complexes of abstract polytopes”

An abstract n-polytope is a poset P [McMullen,Schulte ’02]

(P1) P contains a least and greatest face f−1, fn.

(P2) Each maximal chain has length n + 1

(P3) P is strongly connected (sequence of faces)

more general than piecewise linear (e.g. 11-cell)

boundary is a closed manifold → generalize!
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Mathematical background: Abstract polyhedral complexes

”Combinatorial complexes = complexes of abstract polytopes”

An abstract polyhedral n-complex is a poset P

(P1) P contains least and greatest face f−1, fn+1.

(P2) Each maximal chain has length n + 2

(P3) (P is strongly connected)

(P4’) Homogeneity degrees ki = 2, i = 1, .., n − 1

more general than piecewise linear (e.g. 11-cell)

dual polytope branching possible!

boundary is a closed manifold → generalize!
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Mathematical background: Abstract polyhedral complexes

”Combinatorial complexes = complexes of abstract polytopes”

A generalized abstract polyhedral n-complex is a poset

(P1) P contains least and greatest face f−1, fn+1.

(P2) Each maximal chain has length n + 2

(P3) (P is strongly connected)

(P4”) Face degree k f
i ∈ {1, 2}, i = 1, .., n − 1

more general than piecewise linear (e.g. 11-cell)

dual polytope branching possible!

boundary is a closed manifold → generalize!
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Representations of Polyhedral 2-complexes

LQG/SF: 2-complexes, boundary 1-complexes

finite abstract 2-polytopes are polygons

alternative representation: stranded diagrams
(faces represented by strands)

subdivision → edges/faces represented by
vertices

subdivided cells adjacent to bulk vertex define
spin foam atoms
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Atomic decomposition

A spin foam atom consists of

a bulk vertex v

boundary vertices V = {v̄i , ...},
isomorphic to bulk edges (v v̄i )

bisection vertices V̂ = {v̂ij , ...},
isomorphic to face wedges (v v̄i v̂ij v̄j)

boundary (half)edges (v̄i v̂ij), (v̄j v̂ij)

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 6 / 13



Atomic decomposition

A spin foam atom consists of

a bulk vertex v

boundary vertices V = {v̄i , ...},
isomorphic to bulk edges (v v̄i )

bisection vertices V̂ = {v̂ij , ...},
isomorphic to face wedges (v v̄i v̂ij v̄j)

boundary (half)edges (v̄i v̂ij), (v̄j v̂ij)

interpretation as dual to (local) D-polytope
possible, but not unique

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 6 / 13



Atomic decomposition

A spin foam atom consists of

a bulk vertex v

boundary vertices V = {v̄i , ...},
isomorphic to bulk edges (v v̄i )

bisection vertices V̂ = {v̂ij , ...},
isomorphic to face wedges (v v̄i v̂ij v̄j)

boundary (half)edges (v̄i v̂ij), (v̄j v̂ij)

interpretation as dual to (local) D-polytope
possible, but not unique

Spin foam atoms are isomorphic to bisected closed
graphs (cf. [KKL ’10, KLP ’12])

(which are isomorphic to closed graphs)
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Foams as molecules from atoms

Spin foams are bondings of atoms
along patches

GFT: Wick contractions of fields
φ(gv̄ v̂1 , .., gv̄ v̂n)

Boundary given by patches which
are not bonded/ by deletion of
internal (closed) strands
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Foams as molecules from atoms

Spin foams are bondings of atoms
along patches

GFT: Wick contractions of fields
φ(gv̄ v̂1 , .., gv̄ v̂n)

Boundary given by patches which
are not bonded/ by deletion of
internal (closed) strands

Any generalized polyhedral (2-)complex
has a decomposition into atoms, and
equivalently is a bonding of atoms

All of this works for generalized polyhedral
complexes of arbitrary dimension
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Generalizing the combinatorics of simplicial GFT

No obstacle for GFT of polyhedral
interactions with simplicial boundary

Important: criteria, analytical/numerical
control

Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [Bonzom, Gurau, Rivasseau ’12]

Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 8 / 13



Generalizing the combinatorics of simplicial GFT

No obstacle for GFT of polyhedral
interactions with simplicial boundary

Important: criteria, analytical/numerical
control

Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [Bonzom, Gurau, Rivasseau ’12]

Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 8 / 13



Generalizing the combinatorics of simplicial GFT

No obstacle for GFT of polyhedral
interactions with simplicial boundary

Important: criteria, analytical/numerical
control

Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [Bonzom, Gurau, Rivasseau ’12]

Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

2

1

2

1

2

1

3

2

1

2

1

2

1

3 3

3

2 2
1

3
1

2

1

3

3

2

1

2

1

2

1

3

3

3

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 8 / 13



Generalizing the combinatorics of simplicial GFT

No obstacle for GFT of polyhedral
interactions with simplicial boundary

Important: criteria, analytical/numerical
control

Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [Bonzom, Gurau, Rivasseau ’12]

Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

2

1

2

1

2

1

3

2

1

2

1

2

1

3 3

3

2 2
1

3
1

2

1

3

3

2

1

2

1

2

1

3

3

3

Johannes Thürigen (AEI Potsdam) Polyhedral GFT July 17, 2014 8 / 13



Generalizing the combinatorics of simplicial GFT

No obstacle for GFT of polyhedral
interactions with simplicial boundary

Important: criteria, analytical/numerical
control

Polytopes effectively generated anyway:
Ex.: Uncoloring of colored GFT (bipartite
simplex gluings) [Bonzom, Gurau, Rivasseau ’12]

Decomposition generalizes to GFT without
colors: Any regular boundary atoms generated
by simplicial interaction

Prop.: Any atom with regular boundary graph can
be decomposed into simplicial atoms
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Multi-species GFT

Straightforward generalization to irregular boundary graphs: [Reisenberger, Rovelli ’01]

Extend field content φ(l) : G×l −→ R

extension to D-polytopes not specified

infinite field species l ∈ N formally possible

GFT generating known Spin Foams [KKL ’10]

practical usefullness?
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Virtual edges

Correspondence to regular graphs

k odd: Any graph can be obtained from a k-regular graph by
contraction/deletion of edges labeled as virtual

k even: Any graph with even valencies

Advantage: Only patches with fixed valency needed!
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Dually weighted GFT

Fields with indices mv̄ v̂ = 0, 1, ..,M: φmv̄ (gv̄ ) = φmv̄ v̂1
,...,mv̄ v̂D

(gv̄ v̂1 , ..., gv̄ v̂D )

Meaning: edge physical m = 0, virtual m > 1

using a matrix A, limM→∞
1
M
TrAq = δq,2:

K(M)
m1m2 =

∏D
i=1K

(M)
m1,im2,i =

(
1 0
0 A

)
m1,im2,i

All physical quantities in the limit limM→∞
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∑
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∑
i∈I
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{mv̄}V

∫
[dg ]V i

(
{g v̄}V i

)
V(M)
{mv̄}V

∏
v̄∈V i

φ(g v̄ )

using a matrix A, limM→∞
1
M
TrAq = δq,2:

K(M)
m1m2 =

∏D
i=1K

(M)
m1,im2,i =

(
1 0
0 A

)
m1,im2,i

All physical quantities in the limit limM→∞
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(
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All physical quantities in the limit limM→∞

M → ∞

Result: Virtual edges are not dynamical, propagation as composite objects
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Gravitational models, dually weighted

No obstacle for including the established amplitudes

Ex.: eprl edge operator on edge v̄ :

K(g v1v̄ , g v2v̄ ) =

∫
G×2

dhv1v̄dhv2v̄

∏
(v̄ v̂)

∑
Jv̂∈J

trJv̂
(
g v1v̄ v̂h

−1
v1v̄ SJv̂ ,Nv̄ hv2v̄g

−1
v2v̄ v̂

)
(SJ,N simplicity operator, J set of γ–simple reps of g = so(4) ∼= su(2)+ × su(2)−)

imposes simplicity on ”triangulated” atom

alternative: trivial factor δ(g v1 v̄ v̂h
−1
v1 v̄

)δ(hv2 v̄g
−1
v2 v̄ v̂

) on virtual links

modification of geometricity for higher valency?
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Conclusions

combinatorial compatibility of any LQG and GFT shown

higher-valent GFT models: multi-species, dual weighting

precise understanding of generated complexes
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precise understanding of generated complexes

Stage is set to analyze these models

effective interactions, relevant operators

...

(though from a QFT perspective the generalization seems rather unnecessary and
complicated)
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