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Kitaev's Periodic Table of topological insulators and superconductors

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (7). The 75 (Cy) and 775 (R;) columns indicate the range of topological invariant. Examples of ropologically
nontrivial phases are shown in parentheses.
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Kitaev '09: Based on K-theory, Bott periodicity.
Q: Are interesting features robust/model-independent?

Related: Freed—Moore '13: Twisted equivariant K-theory
classification of gapped free-fermion phases.



Classification principles
Wanted: some object (group?) classifying gapped free-fermion
phases compatible with certain given symmetry G.
Existing literature: Differ on many basic definitions!

Basic classification principles:

» Symmetries of dynamics can preserve/reverse time/charge.

v

Projective Unitary-Antiunitary symmetries ~ Wigner.

v

Charged fermionic dynamics, as opposed to neutral dynamics.
» Insensitive to “deformations” preserving gap.

Strategy: encode symmetry data in a C*-algebra A.
» “Topological” invariants are those of A.



Charged gapped free-fermion dynamics

Non-degenerate (“gapped”) dynamics

Unitary time evolution U; = €' on (JZ, h), with 0 in gap of
spec(H). Define I := sgn(H), so that U, = e'tH = eiltIH,

» [ splits /7 into positive/negative energy subspaces.
Important for positive energy (second) quantization'.

» Kitaev '09: consider all H with same flattening I to be
“homotopy” equivalent. Only grading I' is important.

!Derezinski-Gérard '10, '13.



Time and charge reversing symmetries

Symmetry group G — SBr(H). Extra data:
» Homomorphisms? ¢, 7 : G — {#1} encode whether rep.
g = 0g is unitary/antiunitary and time preserving/reversing:
gi = o(g)ig, gUr = U (g8
» Consequence: g is even/odd according to ¢ == ¢ o,
gl = c(g)le.
» 2-cocycle 0 : G x G — T encodes 04,05, = 0(81,82)0g.¢,-
» Summary: Symmetry data is (G, c, ¢, o), acting projectively
on graded Hilbert space (.##,I') as even/odd (anti)unitary
operators according to ¢, —— “Graded PUA-rep”

2¢.f. Freed—Moore '13.



Symmetry algebra: twisted crossed products

Graded PUA-rep of (G, ¢, ¢,0) AL non-degenerate *-rep of
associated graded twisted crossed product C*-algebra®
A=C X(a0)G.

» C is regarded as a real algebra.

» ¢(g) = —1 <= ag)(\) = A, twisted by o.

» ¢ determines Z»-grading on A.

» All symmetry data is in A.
Notation: € x(11) G — C x G.

3Leptin '65, Busby '70, Packer—Raeburn '89
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Example: CT-symmetries, Clifford algebras, tenfold way

Let T ="Time-reversal’, C="Charge-conjugation”. Consider
G=PC{l, T} x{1,C}="CT"-group.
> c,¢ are standard, e.g., ¢(T) = -1, ¢(C) = —1.

» o can be standardised using U(1) phase freedom.
» Ten possible “CT-classes”; each symmetry algebra
A = C X(q, P is a Clifford algebra.



Example: CT-symmetries, Clifford algebras, tenfold way*

Generators 2 T Associated glr){gfrajed Graded

of P algebra tor Morita class
algebra

T +1 | Mx(R) & Mx(R) Chp Choo

C, T —1 41 | My(R) Cho Cho

C -1 MQ(C) C/2’1 CIQ’O

C, T -1 =11 My(H) Ch1 Ch.o

T -1 HoH C/3,0 C/4,0

C, T +1 -1 | My(H) Clo,a Chs o

C +1 MQ(C) C/0’3 CIG’()

C, T +1 41 | My(R) Chs Cho

N/A N/A CeC Ch Cly

S S2=+41 | My(C) Ch Ch

Table: The ten classes CT-symmetries (P, o), and their corresponding

Clifford-symmetry-algebras.

*Dyson '62, Altland-Zirnbauer—Heinzner—Huckleberry '97, '05,
Abramovici—Kalugin '11 etc.



Towards K-theory groups of symmetry algebras

What are physically relevant groups for A = C x(4,4) G7

Start with ¢ = 1 (trivial grading) case.
» For compact G: Representation ring/group R(G) = Ko(.A).
» For general (G, ¢,0), define R(G, ¢,0) to be Ky(A).

. Serre—S
E.g commutative case: C x Z9 22 C(T?)-module &5—=720

I'(E — T9); reminiscent of Bloch theory and band insulators.
Q:What is “Ko(A)" for graded symmetry algebras (¢ # 1)?

Al: "Super-rep group”, super-Brauer group, super-division
algebras. . . recovers d = 0 in Table.

A2: Use a model for K-theory in Karoubi '78, roughly: stable
homotopy classes of grading operators compatible with A.



A model for K-theory: Difference-groups

Consider the set Grad 4(W) of possible grading operators on an
ungraded A-module W.

» “symmetry-compatible gapped Hamiltonians on W".

Note: 7o (Grad4(W)) has no group structure yet!
= Study differences of compatible Hamiltonians.

» Triple (W,T1,T7) represents ordered difference.
» Triple is trivial if 1,2 are homotopic within Grad 4(W).
» @ gives monoid structure to the set GradA of all triples;
trivial triples form submonoid Grad%".
The difference-group of symmetry-compatible gapped
Hamiltonians, Ko(.A), is Grad 4/ ™~ Gradtiv-
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A model for K-theory: Difference-groups

Nice properties of Ko(-):
» Ko(A) is an abelian group, with [W,T'1,T2] = —[W, T2, T4].
» Path independence: [W,I1,T2] + [W, T2, T3] = [W,T1,T3].
» [W,T1,T3] depends only on the homotopy class of ;.

Special case: for purely-even AV, our Ko(A®Y) is one of Karoubi's
models for the ordinary Kp(A®Y).

Karoubi '78, '08: Clifford “suspension” A — A@CIOJ is
compatible with the usual suspension A — Cy(R,.A), i.e.,

Ko(A®Ch.n) = Ko(Go(R", A)).
Kn(A), if A= A%,

I
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Dimension shifts in Periodic Table

Common claim: Classification in d dimensions is the same as d =0
classification, except for shift in by d. To what extent is this true?

» G = Gg X P, plus mild assumptions, symmetry algebra
A AY&Cl, . Thus,

Ko(A) 2 Ko, (AZ) “2" KRT5(X).

S~uppose G = :GO X P where Go is an extension of Gy by RY. Then
A=C A (&,5) G= (.A([EV X(8,v) |Rd)®C/r,s.

Q: How is Ko(A) related to Ko(.A)?
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Dimension shifts in Periodic Table

Powerful results from K-theory of crossed products:

Connes—Thom isomorphism, Connes '81

Kn(A X (a,1) R) = K, _1(A) for any action of R.

Packer—Raeburn stabilisation trick, Packer—Raeburn '89

Twisted crossed products can be untwisted after stabilisation:

(A X (a,0) G) ®K = (A@ ’C) H(a,1) G.

Corollary: Dimension shifts

Kn(-’4 A(e,0) [Rd) = Kn—d(A)'
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Dimension shifts in Periodic Table

Thus, extra RY symmetry shifts degree of the difference group:

Ko(A) = Ko r (AR %(50) RY) 2 Koo r_g(AR).

» Note: resuItNdoes not depend on how R¢ fits in
1— Gy— Gy — RY — 1.
» Extra R symmetries may be projectively realised (IQHE).

» Some extra assumptions needed for discretised version of this
result.
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Periodic Table of difference-groups of gapped topological phases

2 12 | Ko(A) = Ky y(R) or K,_4(C)
n T 0 d=1 d=2 d=3
0 1| z 0 0 0
141 +1| 2, Z 0 0
2 | +1 7, Z, yA 0
3041 -1 o0 Z, Z, yA
4 1| z 0 Z, Z,
5/ -1 —1] o0 yA 0 7,
6| -1 0 0 yA 0
71-1 +1] o0 0 0 yA
0] N/A Z 0 Z 0
1]s2=411] o yA 0 yA

Table: Vertical degree shifts — effect on Ko(.A) of tensoring with a
Clifford algebra. Horizontal shifts — Connes—Thom isomorphism.
Twofold and eightfold periodicities — Bott periodicity. Assuming
translational symmetry x CT-symmetry.
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General remarks

» Conceptual advantage: all symmetries are treated on an equal
footing. These include T, C, projective symmetries (e.g.
IQHE), Z9 (band insulators), and extra spatial translations
Re.

» Phenomenon of “dimension shift” is robust and
model-independent.

» We see why T-symmetry needs to be broken for IQHE, but
Z»-invariant possible for QSHE.

» Not restricted to condensed matter applications.
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