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Kitaev’s Periodic Table of topological insulators and superconductors

Kitaev ’09: Based on K -theory, Bott periodicity.
Q: Are interesting features robust/model-independent?

Related: Freed–Moore ’13: Twisted equivariant K -theory
classification of gapped free-fermion phases.
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Classification principles

Wanted: some object (group?) classifying gapped free-fermion
phases compatible with certain given symmetry G .

Existing literature: Differ on many basic definitions!

Basic classification principles:

I Symmetries of dynamics can preserve/reverse time/charge.

I Projective Unitary-Antiunitary symmetries ∼ Wigner.

I Charged fermionic dynamics, as opposed to neutral dynamics.

I Insensitive to “deformations” preserving gap.

Strategy: encode symmetry data in a C ∗-algebra A.

I “Topological” invariants are those of A.
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Charged gapped free-fermion dynamics

Non-degenerate (“gapped”) dynamics

Unitary time evolution Ut = e itH on (H , h), with 0 in gap of
spec(H). Define Γ := sgn(H), so that Ut = e itH = e iΓt|H|.

I Γ splits H into positive/negative energy subspaces.
Important for positive energy (second) quantization1.

I Kitaev ’09: consider all H with same flattening Γ to be
“homotopy” equivalent. Only grading Γ is important.

1Dereziński–Gérard ’10, ’13.
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Time and charge reversing symmetries

Symmetry group G → BR(H ). Extra data:

I Homomorphisms2 φ, τ : G → {±1} encode whether rep.
g ≡ θg is unitary/antiunitary and time preserving/reversing:

gi = φ(g)ig, gUt = Uτ(g)tg.

I Consequence: g is even/odd according to c := φ ◦ τ ,
gΓ = c(g)Γg.

I 2-cocycle σ : G × G → T encodes θg1θg2 = σ(g1, g2)θg1g2 .

I Summary: Symmetry data is (G , c , φ, σ), acting projectively
on graded Hilbert space (H , Γ) as even/odd (anti)unitary
operators according to c , φ —— “Graded PUA-rep”

2c.f. Freed–Moore ’13.
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Symmetry algebra: twisted crossed products

Graded PUA-rep of (G , c , φ, σ)
1−1←−→ non-degenerate ∗-rep of

associated graded twisted crossed product C ∗-algebra3

A := Co(α,σ) G .

I C is regarded as a real algebra.

I φ(g) = −1⇐⇒ α(g)(λ) = λ̄, twisted by σ.

I c determines Z2-grading on A.

I All symmetry data is in A.

Notation: Co(1,1) G −→ Co G .

3Leptin ’65, Busby ’70, Packer–Raeburn ’89
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Example: CT -symmetries, Clifford algebras, tenfold way

Let T =“Time-reversal”, C =“Charge-conjugation”. Consider
G = P ⊂ {1,T} × {1,C} =“CT ”-group.

I c, φ are standard, e.g., φ(T ) = −1, c(C ) = −1.

I σ can be standardised using U(1) phase freedom.

I Ten possible “CT -classes”; each symmetry algebra
A = Co(α,σ) P is a Clifford algebra.
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Example: CT -symmetries, Clifford algebras, tenfold way4

Generators
of P

C2 T2 Associated
algebra

Ungraded
Clifford
algebra

Graded
Morita class

T +1 M2(R)⊕M2(R) Cl1,2 Cl0,0
C ,T −1 +1 M4(R) Cl2,2 Cl1,0
C −1 M2(C) Cl2,1 Cl2,0
C ,T −1 −1 M2(H) Cl3,1 Cl3,0
T −1 H⊕ H Cl3,0 Cl4,0
C ,T +1 −1 M2(H) Cl0,4 Cl5,0
C +1 M2(C) Cl0,3 Cl6,0
C ,T +1 +1 M4(R) Cl1,3 Cl7,0

N/A N/A C⊕ C Cl1 Cl0
S S2 = +1 M2(C) Cl2 Cl1

Table: The ten classes CT -symmetries (P, σ), and their corresponding
Clifford-symmetry-algebras.

4Dyson ’62, Altland–Zirnbauer–Heinzner–Huckleberry ’97, ’05,
Abramovici–Kalugin ’11 etc.
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Towards K -theory groups of symmetry algebras

What are physically relevant groups for A = Co(α,σ) G ?

Start with c ≡ 1 (trivial grading) case.

I For compact G : Representation ring/group R(G ) ∼= K0(A).

I For general (G , φ, σ), define R(G , φ, σ) to be K0(A).

E.g commutative case: Co Zd ∼= C (Td)-module
Serre−Swan←−−−−−−→

Γ (E → Td); reminiscent of Bloch theory and band insulators.

Q:What is “K0(A)” for graded symmetry algebras (c 6≡ 1)?

A1: “Super-rep group”, super-Brauer group, super-division
algebras. . . recovers d = 0 in Table.
A2: Use a model for K -theory in Karoubi ’78, roughly: stable
homotopy classes of grading operators compatible with A.
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A model for K -theory: Difference-groups

Consider the set GradA(W ) of possible grading operators on an
ungraded A-module W .

I “symmetry-compatible gapped Hamiltonians on W ”.

Note: π0 (GradA(W )) has no group structure yet!
⇒ Study differences of compatible Hamiltonians.

I Triple (W , Γ1, Γ2) represents ordered difference.

I Triple is trivial if Γ1, Γ2 are homotopic within GradA(W ).

I ⊕ gives monoid structure to the set GradA of all triples;
trivial triples form submonoid GradtrivA .

The difference-group of symmetry-compatible gapped
Hamiltonians, K0(A), is GradA/ ∼GradtrivA

.
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A model for K -theory: Difference-groups

Nice properties of K0(·):

I K0(A) is an abelian group, with [W , Γ1, Γ2] = −[W , Γ2, Γ1].

I Path independence: [W , Γ1, Γ2] + [W , Γ2, Γ3] = [W , Γ1, Γ3].

I [W , Γ1, Γ2] depends only on the homotopy class of Γi .

Special case: for purely-even Aev, our K0(Aev) is one of Karoubi’s
models for the ordinary K0(Aev).

Karoubi ’78, ’08: Clifford “suspension” A 7→ A⊗̂Cl0,1 is
compatible with the usual suspension A 7→ C0(R,A), i.e.,

K0(A⊗̂Cl0,n) ∼= K0(C0(Rn,A)).
∼= Kn(A), if A = Aev.
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Dimension shifts in Periodic Table

Common claim: Classification in d dimensions is the same as d = 0
classification, except for shift in by d . To what extent is this true?

I G = G0 × P, plus mild assumptions, symmetry algebra
A ∼= Aev

R
⊗̂Clr ,s . Thus,

K0(A) ∼= Ks−r (Aev
R ) “∼=”KR r−s(X ).

Suppose G̃ = G̃0 × P where G̃0 is an extension of G0 by Rd . Then
Ã = Co(α̃,σ̃) G̃ ∼= (Aev

R
o(β,ν) R

d)⊗̂Clr ,s .

Q: How is K0(Ã) related to K0(A)?
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Dimension shifts in Periodic Table

Powerful results from K -theory of crossed products:

Connes–Thom isomorphism, Connes ’81

Kn(Ao(α,1) R) ∼= Kn−1(A) for any action of R.

Packer–Raeburn stabilisation trick, Packer–Raeburn ’89

Twisted crossed products can be untwisted after stabilisation:
(Ao(α,σ) G )⊗K ∼= (A⊗K) o(α′,1) G .

Corollary: Dimension shifts

Kn(Ao(α,σ) R
d) ∼= Kn−d(A).

13 / 1



Dimension shifts in Periodic Table

Thus, extra Rd symmetry shifts degree of the difference group:

K0(Ã) ∼= Ks−r (Aev
R o(β,ν) R

d) ∼= Ks−r−d(Aev
R ).

I Note: result does not depend on how Rd fits in
1→ G0 → G̃0 → Rd → 1.

I Extra Rd symmetries may be projectively realised (IQHE).

I Some extra assumptions needed for discretised version of this
result.
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Periodic Table of difference-groups of gapped topological phases

n C2 T2 K0(A) ∼= Kn−d(R) or Kn−d(C)
d = 0 d = 1 d = 2 d = 3

0 +1 Z 0 0 0
1 +1 +1 Z2 Z 0 0
2 +1 Z2 Z2 Z 0
3 +1 −1 0 Z2 Z2 Z

4 −1 Z 0 Z2 Z2

5 −1 −1 0 Z 0 Z2

6 −1 0 0 Z 0
7 −1 +1 0 0 0 Z

0 N/A Z 0 Z 0
1 S2 = +1 0 Z 0 Z

Table: Vertical degree shifts — effect on K0(A) of tensoring with a
Clifford algebra. Horizontal shifts — Connes–Thom isomorphism.
Twofold and eightfold periodicities — Bott periodicity. Assuming
translational symmetry × CT -symmetry.
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General remarks

I Conceptual advantage: all symmetries are treated on an equal
footing. These include T ,C , projective symmetries (e.g.
IQHE), Zd (band insulators), and extra spatial translations
Rd .

I Phenomenon of “dimension shift” is robust and
model-independent.

I We see why T -symmetry needs to be broken for IQHE, but
Z2-invariant possible for QSHE.

I Not restricted to condensed matter applications.
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