On the *K*-theoretic classification of topological phases of matter arXiv:1406.7366

Guo Chuan Thiang

University of Oxford

FFP14 — 17 July 2014

Kitaev's Periodic Table of topological insulators and superconductors

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and time-reversal symmetry (T). The $\pi_0(C_q)$ and $\pi_0(R_q)$ columns indicate the range of topological invariant. Examples of *topologically* nontrivial phases are shown in parentheses.

$q \pi_0(C_q) d=1 d=2 d=3$	q	$\pi_0(R_q)$	d = 1	d = 2	<i>d</i> = 3
0 Z (IQHE) 1 0	0	\mathbb{Z}		no symmetry $(p_x + ip_y, e.g., SrRu)$	T only (³ He-B)
Above: insulators without time-reversal symmetry (i.e., systems with <i>Q</i> symme- try only) are classified using complex <i>K</i> - theory.		\mathbb{Z}_2	no symmetry (Majorana chain)	$T \text{ only } \\ \left((p_x + ip_y) \uparrow + (p_x - ip_y) \downarrow \right)$	T and Q (BiSb)
		\mathbb{Z}_2	T only ((TMTSF) ₂ X)	T and Q (HgTe)	
Right: superconductors/superfluids (systems with no symmetry or T -symmetry only) and time-reversal invariant insulators (systems with both T and Q) are class	3 4 5 6	0 ℤ 0	T and Q		
sified using real K-theory.	7	0			no symmetry

Kitaev '09: Based on *K*-theory, Bott periodicity. Q: Are interesting features robust/model-independent?

Related: Freed–Moore '13: Twisted equivariant *K*-theory classification of gapped free-fermion phases.

2/1

Classification principles

Wanted: some object (group?) classifying *gapped* free-fermion phases compatible with certain given symmetry *G*.

Existing literature: Differ on many basic definitions!

Basic classification principles:

- ► Symmetries of dynamics can preserve/reverse time/charge.
- ► Projective Unitary-Antiunitary symmetries ~ Wigner.
- ► *Charged* fermionic dynamics, as opposed to *neutral* dynamics.
- ► Insensitive to "deformations" preserving gap.

Strategy: encode symmetry data in a C^* -algebra \mathcal{A} .

▶ "Topological" invariants are those of A.

Charged gapped free-fermion dynamics

Non-degenerate ("gapped") dynamics Unitary time evolution $U_t = e^{itH}$ on (\mathcal{H}, h) , with 0 in gap of $\operatorname{spec}(H)$. Define $\Gamma := \operatorname{sgn}(H)$, so that $U_t = e^{itH} = e^{i\Gamma t|H|}$.

- Γ splits *H* into positive/negative energy subspaces.
 Important for *positive energy (second) quantization*¹.
- Kitaev '09: consider all H with same flattening Γ to be "homotopy" equivalent. Only grading Γ is important.

¹Dereziński–Gérard '10, '13.

Time and charge reversing symmetries

Symmetry group $G \to \mathscr{B}_{\mathbb{R}}(\mathscr{H})$. Extra data:

- Homomorphisms² φ, τ : G → {±1} encode whether rep. g ≡ θ_g is unitary/antiunitary and time preserving/reversing: gi = φ(g)ig, gU_t = U_{τ(g)t}g.
- Consequence: g is even/odd according to c := φ ∘ τ, gΓ = c(g)Γg.
- ► 2-cocycle $\sigma : G \times G \to \mathbb{T}$ encodes $\theta_{g_1}\theta_{g_2} = \sigma(g_1, g_2)\theta_{g_1g_2}$.
- Summary: Symmetry data is (G, c, φ, σ), acting projectively on graded Hilbert space (ℋ, Γ) as even/odd (anti)unitary operators according to c, φ —— "Graded PUA-rep"

²c.f. Freed–Moore '13.

Symmetry algebra: twisted crossed products

Graded PUA-rep of $(G, c, \phi, \sigma) \xleftarrow{1-1}$ non-degenerate *-rep of associated graded *twisted crossed product* C^* -algebra³ $\mathcal{A} := \mathbb{C} \rtimes_{(\alpha,\sigma)} G.$

- ▶ C is regarded as a *real* algebra.
- $\phi(g) = -1 \iff \alpha(g)(\lambda) = \overline{\lambda}$, twisted by σ .
- *c* determines \mathbb{Z}_2 -grading on \mathcal{A} .
- All symmetry data is in A.

Notation: $\mathbb{C} \rtimes_{(1,1)} G \longrightarrow \mathbb{C} \rtimes G$.

³Leptin '65, Busby '70, Packer–Raeburn '89

Example: CT-symmetries, Clifford algebras, tenfold way

Let T ="Time-reversal", C = "Charge-conjugation". Consider $G = P \subset \{1, T\} \times \{1, C\} =$ "CT"-group.

- c, ϕ are standard, e.g., $\phi(T) = -1, c(C) = -1$.
- σ can be standardised using U(1) phase freedom.

Example: CT-symmetries, Clifford algebras, tenfold way⁴

Generators of <i>P</i>	C ² T ²	Associated algebra	Ungraded Clifford algebra	Graded Morita class
Т	+1	$M_2(\mathbb{R})\oplus M_2(\mathbb{R})$	$Cl_{1,2}$	<i>Cl</i> _{0,0}
С, Т	-1 +1	$M_4(\mathbb{R})$	<i>Cl</i> _{2,2}	$Cl_{1,0}$
С	-1	$M_2(\mathbb{C})$	$Cl_{2,1}$	$Cl_{2,0}$
С, Т	-1 -1	$M_2(\mathbb{H})$	<i>Cl</i> _{3,1}	<i>Cl</i> _{3,0}
Т	-1	$\mathbb{H} \oplus \mathbb{H}$	<i>Cl</i> _{3,0}	<i>Cl</i> _{4,0}
С, Т	+1 -1	$M_2(\mathbb{H})$	<i>Cl</i> _{0,4}	$Cl_{5,0}$
С	+1	$M_2(\mathbb{C})$	<i>Cl</i> _{0,3}	$Cl_{6,0}$
<i>C</i> , <i>T</i>	+1 $+1$	$M_4(\mathbb{R})$	<i>Cl</i> _{1,3}	<i>Cl</i> _{7,0}
N/A	N/A	$\mathbb{C}\oplus\mathbb{C}$	$\mathbb{C}I_1$	C /o
5	$S^2 = +1$	$M_2(\mathbb{C})$	$\mathbb{C}I_2$	$\mathbb{C}I_1$

Table: The ten classes CT-symmetries (P, σ), and their corresponding Clifford-symmetry-algebras.

Towards K-theory groups of symmetry algebras

What are physically relevant groups for $\mathcal{A} = \mathbb{C} \rtimes_{(\alpha,\sigma)} G$?

Start with $c \equiv 1$ (trivial grading) case.

- ▶ For compact *G*: Representation ring/group $\mathcal{R}(G) \cong \mathcal{K}_0(\mathcal{A})$.
- ► For general (G, ϕ, σ) , define $\mathcal{R}(G, \phi, \sigma)$ to be $K_0(\mathcal{A})$.

E.g commutative case: $\mathbb{C} \rtimes \mathbb{Z}^d \cong C(\mathbb{T}^d)$ -module $\xleftarrow{\text{Serre-Swan}} \Gamma(E \to \mathbb{T}^d)$; reminiscent of Bloch theory and band insulators.

Q:What is " $\mathcal{K}_0(\mathcal{A})$ " for graded symmetry algebras ($c \neq 1$)?

A1: "Super-rep group", super-Brauer group, super-division algebras... recovers d = 0 in Table.

A2: Use a model for K-theory in Karoubi '78, roughly: stable homotopy classes of grading operators compatible with A.

A model for K-theory: Difference-groups

Consider the set $\operatorname{Grad}_{\mathcal{A}}(W)$ of possible grading operators on an *ungraded* \mathcal{A} -module W.

- "symmetry-compatible gapped Hamiltonians on W".
- Note: $\pi_0(\operatorname{Grad}_{\mathcal{A}}(W))$ has no group structure yet!
 - \Rightarrow Study *differences* of compatible Hamiltonians.
 - ► Triple (W, Γ_1, Γ_2) represents ordered difference.
 - Triple is *trivial* if Γ_1, Γ_2 are homotopic within $\operatorname{Grad}_{\mathcal{A}}(W)$.
 - ► ⊕ gives monoid structure to the set Grad_A of all triples; trivial triples form submonoid Grad^{triv}_A.

The *difference-group* of symmetry-compatible gapped Hamiltonians, $\mathbf{K}_0(\mathcal{A})$, is $\operatorname{Grad}_{\mathcal{A}}/\sim_{\operatorname{Grad}_{\mathcal{A}}^{\operatorname{triv}}}$.

A model for *K*-theory: Difference-groups

Nice properties of $\mathbf{K}_0(\cdot)$:

- $\mathbf{K}_0(\mathcal{A})$ is an abelian group, with $[W, \Gamma_1, \Gamma_2] = -[W, \Gamma_2, \Gamma_1]$.
- ► Path independence: $[W, \Gamma_1, \Gamma_2] + [W, \Gamma_2, \Gamma_3] = [W, \Gamma_1, \Gamma_3].$
- $[W, \Gamma_1, \Gamma_2]$ depends only on the homotopy class of Γ_i .

Special case: for purely-even \mathcal{A}^{ev} , our $\mathbf{K}_0(\mathcal{A}^{ev})$ is one of Karoubi's models for the ordinary $\mathcal{K}_0(\mathcal{A}^{ev})$.

Karoubi '78, '08: Clifford "suspension" $\mathcal{A} \mapsto \mathcal{A} \hat{\otimes} \mathit{Cl}_{0,1}$ is compatible with the usual suspension $\mathcal{A} \mapsto \mathit{C}_0(\mathbb{R}, \mathcal{A})$, i.e.,

$$\begin{array}{rcl} \mathsf{K}_{0}(\mathcal{A}\hat{\otimes} \mathit{Cl}_{0,n}) &\cong & \mathsf{K}_{0}(\mathit{C}_{0}(\mathbb{R}^{n},\mathcal{A})).\\ &\cong & \mathit{K}_{n}(\mathcal{A}), \text{ if } \mathcal{A} = \mathcal{A}^{\mathrm{ev}} \end{array}$$

Dimension shifts in Periodic Table

Common claim: Classification in d dimensions is the same as d = 0 classification, except for shift in by d. To what extent is this true?

• $G = G_0 \times P$, plus *mild* assumptions, symmetry algebra $\mathcal{A} \cong \mathcal{A}_{\mathbb{R}}^{ev} \hat{\otimes} Cl_{r,s}$. Thus,

$$\mathbf{K}_0(\mathcal{A}) \cong K_{s-r}(\mathcal{A}_{\mathbb{R}}^{\mathrm{ev}}) \ ``\cong'' K R^{r-s}(X).$$

Suppose $\tilde{G} = \tilde{G}_0 \times P$ where \tilde{G}_0 is an extension of G_0 by \mathbb{R}^d . Then $\tilde{\mathcal{A}} = \mathbb{C} \rtimes_{(\tilde{\alpha},\tilde{\sigma})} \tilde{\mathcal{G}} \cong (\mathcal{A}_{\mathbb{R}}^{ev} \rtimes_{(\beta,\nu)} \mathbb{R}^d) \hat{\otimes} Cl_{r,s}$.

Q: How is $\mathbf{K}_0(\tilde{\mathcal{A}})$ related to $\mathbf{K}_0(\mathcal{A})$?

Dimension shifts in Periodic Table

Powerful results from K-theory of crossed products:

Connes–Thom isomorphism, Connes '81 $K_n(\mathcal{A} \rtimes_{(\alpha,1)} \mathbb{R}) \cong K_{n-1}(\mathcal{A})$ for any action of \mathbb{R} .

Packer–Raeburn stabilisation trick, Packer–Raeburn '89 Twisted crossed products can be untwisted after stabilisation: $(\mathcal{A} \rtimes_{(\alpha,\sigma)} \mathcal{G}) \otimes \mathcal{K} \cong (\mathcal{A} \otimes \mathcal{K}) \rtimes_{(\alpha',1)} \mathcal{G}.$

Corollary: Dimension shifts $K_n(\mathcal{A} \rtimes_{(\alpha,\sigma)} \mathbb{R}^d) \cong K_{n-d}(\mathcal{A}).$

Dimension shifts in Periodic Table

Thus, extra \mathbb{R}^d symmetry shifts degree of the difference group:

$$\mathsf{K}_0(\widetilde{\mathcal{A}})\cong \mathit{K}_{\mathsf{s}-\mathsf{r}}(\mathcal{A}^{\mathrm{ev}}_{\mathbb{R}}
times_{(eta,
u)}\mathbb{R}^d)\cong \mathit{K}_{\mathsf{s}-\mathsf{r}-\mathsf{d}}(\mathcal{A}^{\mathrm{ev}}_{\mathbb{R}}).$$

- ▶ Note: result does not depend on how \mathbb{R}^d fits in $1 \to G_0 \to \tilde{G}_0 \to \mathbb{R}^d \to 1.$
- Extra \mathbb{R}^d symmetries may be *projectively* realised (IQHE).
- Some extra assumptions needed for discretised version of this result.

Periodic Table of difference-groups of gapped topological phases

n	C ²	T ²	$K_0(\mathcal{A})\cong \mathcal{K}_{n-d}(\mathbb{R})$ or $\mathcal{K}_{n-d}(\mathbb{C})$				
			d = 0	d = 1	<i>d</i> = 2	<i>d</i> = 3	
0		+1	\mathbb{Z}	0	0	0	
1	+1	+1	\mathbb{Z}_2	\mathbb{Z}	0	0	
2	+1		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
3	+1	-1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
4		-1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
5	-1	-1	0	\mathbb{Z}	0	\mathbb{Z}_2	
6	-1		0	0	\mathbb{Z}	0	
7	-1	+1	0	0	0	\mathbb{Z}	
0	N,	/A	Z	0	Z	0	
1	S ² =	= +1	0	\mathbb{Z}	0	\mathbb{Z}	

Table: Vertical degree shifts — effect on $\mathbf{K}_0(\mathcal{A})$ of tensoring with a Clifford algebra. Horizontal shifts — Connes–Thom isomorphism. Twofold and eightfold periodicities — Bott periodicity. Assuming translational symmetry $\times CT$ -symmetry.

General remarks

- ▶ Conceptual advantage: all symmetries are treated on an equal footing. These include *T*, *C*, projective symmetries (e.g. IQHE), Z^d (band insulators), and extra spatial translations R^d.
- Phenomenon of "dimension shift" is robust and model-independent.
- ► We see why *T*-symmetry needs to be broken for IQHE, but Z₂-invariant possible for QSHE.
- ► Not restricted to condensed matter applications.