Influence of quantum matter fluctuations on the expansion parameter of timelike geodesics

Nicola Pinamonti

Dipartimento di Matematica
Università di Genova

Marseille, July 16th, 2014

joint work with N. Drago, arXiv.1402.4265
Motivations

- At short distance the spacetime should be **non-commutative**.
- This feature should be encoded in the “**Quantum Gravity**”

 No satisfactory description.

- We can get information about such a theory analyzing **particular regimes** [Hawking].
- Gravity classically Matter by quantum theory.

\[G_{ab}(x) = 8\pi \langle T_{ab}(x) \rangle_\omega \]

- **Doplicher, Fredenhagen and Roberts 95** use this to obtain **uncertainty relations** for the coordinates on a **flat** quantum space.
- **Starobinski** use this to obtain one of the first cosmological models with inflation.
Motivations

- **Semiclassical equations**: Quantum fields as source for classical ones, like:
 \[G_{ab}(x) = \langle T_{ab}(x) \rangle. \]

- Fluctuations of \(T_{ab}(x) \) **diverge**. Cannot be renormalized.

- Smearing is needed: \(T_{ab}(f), \langle T_{ab}(f)^n \rangle \) give the **probability dist**.

- However, smearing **brakes covariance**.

 Solution: quantize the full theory.

- Intermediate step: **Langevin equation** (like Brownian motion).
 (Passive influence of the right side on the left one).

 \[G_{ab} = T_{ab} \]
Carlip, Mosna and Pitelli \textbf{PRL} (2011) “Vacuum Fluctuations and the Small Scale Structure of Spacetime”.

- Effective 2d dilatonic model for gravity.
- Analyze the probability of a geodesic collapse at small scales.
- Expansion parameter of null geodesics.

\[
\dot{\theta} + \frac{1}{2} \theta^2 = -T
\]

- Probability distribution for a smeared energy density in a 2d CFT. \textbf{[Fewster Ford Roman 2010]}
 - Mean value vanishes.
 - It is bounded from below.
 - There is a long positive tail.
 - Negative energies are more likely.
Motivations

The Raychaudhuri equation for timelike geodesics provides a simplified model:

\[\dot{\theta} + \frac{1}{3} \theta^2 = \ldots - (T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu}) \xi^\mu \xi^\nu \]

- It can be seen as a one-dimensional non-linear field theory.
- **Test of the ideas** in a simplified setting.
- Might provide hints on the underlying quantum gravity.
Plan of the talk

- Restriction of matter fields on timelike curves.
- Perturbative analysis of Raychaudhuri equation.
- Probability of focusing and some final comments on the arising probability distribution.
- Towards bounds for uncertainty of quantum coordinates.

This talk is based on

Restriction of Matter fields on timelike curves

Matter fields - Restriction on timelike curves

- Massless minimally coupled scalar quantum field.

\[-\Box \varphi = 0\]

- The quantization is very well under control.

- The \ast-\ast-algebra generated by linear fields $\varphi(f)$, implementing:

\[\varphi^*(f) = \varphi(\overline{f})\, , \quad [\varphi(f), \varphi(h)] = i\Delta(f, h)\, , \quad \varphi(\Box f) = 0\, .\]

- Assign to every spacetime [Brunetti Fredenhagen Verch]

\[M \mapsto \mathcal{A}(M)\]

- Local non linear fields can be added to the algebra. [Hollands Wald]
Extended algebra of fields

Following [Brunetti Fredenhagen Duetsch], $\mathcal{A}(M)$ algebra of functionals over smooth field configurations.

After deforming $\mathcal{A}(M) \Delta \rightarrow -2iH$ it can be extended trivially.

$$\mathcal{F}(M) := \{ F : \mathcal{E}(M) \rightarrow \mathbb{C} | F \text{ inf. diff. with compact support}, \quad WF(F^{(n)}) \cap (\overline{V}_+ \cup \overline{V}_-) = \emptyset \},$$

where the product is

$$F \star_H G := \sum_{n=0}^{\infty} \frac{1}{n!} \langle F^{(n)}, H^{\otimes n} G^{(n)} \rangle$$

H is an Hadamard parametrix, enjoying the microlocal spectrum condition.
Let be $\gamma \subset M$ a smooth timelike curve.

Not every element of $\mathcal{F}(M)$ can be tested on field configurations restricted on γ:

$$\mathcal{F}(M) \ni F(\varphi) \rightarrow \int \varphi \delta(\gamma) fd\mu, \quad F(\delta(\gamma)\varphi) \text{ diverges.}$$

We can define fields intrinsically on γ

$$\mathcal{F}(\gamma) := \{ F : \mathcal{E}(\gamma) \rightarrow \mathbb{C} | \text{ F inf. diff. with compact support, } \text{ } \}$$

$$\text{WF}(F^{(n)}) \cap (\mathbb{R}^n_+ \cup \mathbb{R}^n_-) = \emptyset \},$$

$$F \star_h G := \sum_{n=0}^{\infty} \frac{1}{n!} \langle F^{(n)}, \ h^{\otimes n} G^{(n)} \rangle$$

being h a two-point function with $\text{WF}(h) \subset \mathbb{R}_+ \times \mathbb{R}_-$.
Restriction of Matter fields on timelike curves

Connection with the spacetime theory

Question

Can we imbed $\mathcal{F}(\gamma)$ into $\mathcal{F}(M)$?

Yes because we can restrict

$$h = H \circ (\gamma \otimes \gamma) = H \cdot \delta(\gamma \otimes \gamma)$$

$WF(\delta(\gamma \otimes \gamma))$ contains only spatial directions.

Theorem

Let $\iota_\gamma : \mathcal{E}(M) \to \mathcal{E}(\gamma)$ defined by $\iota_\gamma \varphi := \varphi \circ \gamma$ realizing the restriction of field configurations on γ

Its pullback imbed $\mathcal{F}(\gamma) \subset \mathcal{F}(M)$: $\iota_\gamma^* \mathcal{F}(\gamma) \subseteq \mathcal{F}(M)$.

$$\iota_\gamma^* F \star_H \iota_\gamma^* G = \iota_\gamma^*(F \star_h G),$$

It does **not** work on light like curves.
Raychaudhuri equation

- Consider a congruence of timelike geodesic \mathcal{C}.

 The **expansion parameter** θ measures the **rate of change** of $\frac{4}{3} \pi r^3$ along \mathcal{C}

 - $\theta > 0$ expansion
 - $\theta = 0$ parallel motion
 - $\theta < 0$ contraction

- Its evolution is governed by the **Raychaudhuri** equation

 $$\dot{\theta} = -\frac{1}{3} \theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega^{\mu\nu}\omega_{\mu\nu} - R_{\mu\nu}\xi^\mu\xi^\nu,$$

 $\omega_{\mu\nu}$: angular velocity of the geodesics;

 $\sigma_{\mu\nu}$: deformation parameter;

 ξ^μ: tangent vector of the geodesic.
Einstein equation can be used to evaluate $R_{\mu\nu}$.

$$R_{\mu\nu} = T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T$$

In the case of an expanding flat FRW spacetime

$$ds^2 = -dt^2 + a^2(t)dx^2, \quad \theta(t) = 3H(t)$$

Raychaudhuri equation

$$\dot{\theta} = -\frac{1}{3} \theta^2 - \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) \xi^\mu \xi^\nu,$$

is equivalent to **Friedmann equations** (up to an initial condition).
Question

Can we treat fluctuations of the expansion parameter as fields in the matter algebra?

- The equation for $\psi \left(\theta = 3 \dot{\psi}/\psi \right)$ defined up to a scale.

$$
\ddot{\psi} + \frac{1}{3} \left(\sigma_{\mu\nu} \sigma^{\mu\nu} - \omega^{\mu\nu} \omega_{\mu\nu} + T_{\text{cl}} \right) \psi + \frac{1}{3} \varphi^2 \psi = 0,
$$

$$
:= V
$$

We are interested in the fluctuations of ψ induced by the ones of φ.

- We shall use perturbation theory and test if ψ vanishes

 1. The fluctuations of $\omega_{\mu\nu}, \sigma_{\mu\nu}$ are negligible;
 2. The influence of ψ on φ is negligible.

- It is a one dimensional problem. It is a field theory on a line.
Retarded propagator of the theory

A poor man interacting quantum field theory.

\[\ddot{\psi} + V \psi + \frac{1}{3} \dot{\phi}^2 \psi = 0. \]

The solution is formally

\[\psi = \psi_0 + R_V (\dot{\phi}^2 \psi), \]

\(R_V: \mathcal{D}(\mathbb{R}) \to \mathcal{E}(\mathbb{R}) \) the retarded propagator of \(P_\gamma = -\frac{d^2}{dt^2} - V \) i.e.

\[R_V P_\gamma(f) = P_\gamma R_V(f) = f, \quad \text{supp}(R_V f) \subseteq J^+(\text{supp}(f)). \]

The integral kernel of \(R_V \) has the form

\[R_V(x, y) = S(x, y) \theta(x - y), \quad (R_V f)(x) = \int \mathcal{E}(\mathbb{R}^2) R_V(x, y) f(y) dy. \]

We look for a recursive solution.
Perturbative analysis: Yang-Feldman method

$\dot{\varphi}^2 \rightarrow \lambda \varphi^2$. Solution as a **formal power series** in λ around a **free classical solution** ψ_0.

$$
\psi(f) = \psi_0(f) + \psi_1(f) + \psi_2(f) + \ldots
$$

[Epstein, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch, Fredenhagen] Choose $\lambda \in C_0^\infty(\gamma)$

$$
\psi_n(f) = R_V(\lambda \varphi^2 \psi_{n-1})(f) \quad n = 1, 2, \ldots
$$

$$
\psi_n(f) = \int f_R(x_{n-1}) S(x_{n-1}, x_{n-2}) \ldots S(x_1, x_0) \lambda(x_{n-1}) \ldots \lambda(x_0) \cdot
\underbrace{\vartheta(x_{n-1} - x_{n-2}) \ldots \vartheta(x_1 - x_0) \varphi^2(x_{n-1}) \ast h \ldots \ast h \varphi^2(x_0)}_{:= r(x_{n-1}, \ldots, x_0)}
$$

- To solve it we need to consider ill defined $R_V(x, y) \cdot h(x, y)$.
- We want r for every possible $V \implies$ we leave S out of r.
- **Small problem**, S is not symmetric \implies modify slightly the standard construction.
Construction of $r(x_n, \ldots, x_0)$ in $\mathcal{F}(\gamma)$

The $r(x_n, \ldots, x_0)$ are distributions with values in $\mathcal{F}(\gamma)$

1 retardation 1: if $x_n > \ldots > x_0$ then

$$r(x_n, \ldots, x_0) = \dot{\varphi}^2(x_n) \ast_h \ldots \ast_h \dot{\varphi}^2(x_0);$$

2 retardation 2: if it does not hold that $x_n \geq \ldots \geq x_0$ then

$$r(x_n, \ldots, x_0) = 0;$$

3 factorization: if $x_n \geq \ldots \geq x_0$ and $x_{m+1} > x_m$, $m \in \{1, \ldots, n\}$, then

$$r(x_n, \ldots, x_0) = r(x_n, \ldots, x_{m+1}) \ast_h r(x_m, \ldots, x_0);$$

4 initial element: $r(x_0) = \dot{\varphi}^2(x_0)$.

Solution

The construction of r is an application of the recently developed pAQFT. [Epstain, Glaser, Steinmann, Hollands, Wald, Brunetti, Duetsch, Fredenhagen, Rejzner]

Inductive construction of r [Epstain Glaser] uses the previous general properties.

- We have the **initial element**.
- Suppose that you have all rs with $n - 1$ entries then
 1. Construct $r(x_n, \ldots, x_0)$ outside the full diagonal $x_n = \ldots = x_0$ with the **factorization property**.
 2. Extend it to the full diagonal by means of Steinmann scaling degree techniques [Brunetti Fredenhagen].

In the last step there is the usual renormalization freedom expressed by a certain number of constants.
Adiabatic limit

- With those \(r \) we can obtain \(\psi_n(f) \in \mathcal{F}(\gamma) \) for every \(n \).

- The last step is the analysis of the limit \(\lambda \to 1 \) (in \(\mathcal{F}(\gamma) \)).

- It can be performed in \(\mathcal{F}(\gamma) \) because the equation for \(\psi \) is linear in \(\psi \) and we smear \(\psi \) with a compactly supported smooth function \(f \).

- Formally we can split \(\psi = \psi^+ + \psi^- \)

\[
\ddot{\psi}^\pm + V\psi^\pm + \frac{1}{3}\dot{\phi}^2\psi^\pm = \pm b,
\]

- \(b \) smooth and supported in the past of \(f \).
- \(\text{supp}(\psi^\pm) \) in the future/past of \(\text{supp}(b) \).

For \(\psi^+ \) with \(\lambda = 1 \) the retarded integral are compact.
With those r we can obtain $\psi_n(f)$ for every n in the limit $\lambda = 1$.

Question

What kind of fields are $\psi_n(f)$?

Theorem

$\psi_n(f)$ are functionals over matter field configurations. They are elements of $\mathcal{F}(\gamma) \forall n$.

- The perturbative analysis of the moments of ψ can be put on firm mathematical grounds.

- If we have a state ω for the matter fields, we can construct the probability distribution for $\psi(f)$.
Application in Minkowski

- Estimate the focusing probability of a family of \textbf{timelike parallel geodesics} on Minkowski within the interval of time I.

 (collapse condition, realize ψ with negative values.)

\[
\psi_0(t) = \psi_0, \quad \ddot{\psi} = \psi_0 + R_V(\lambda \dot{\varphi}^2 \psi), \quad R_V(t, s) = -(t - s)\vartheta(t - s).
\]

A \textbf{second order} estimate on the Minkowski vacuum gives

\[
\omega(\psi(f)) \approx \psi_0, \\
\varsigma^2(f) \approx \omega(\psi_1(f) \ast \omega \psi_1(f)) = \frac{\psi_0^2}{\pi^2 7!} \int_{0}^{+\infty} dp \ p^3 \hat{f}(p) \hat{f}(p).
\]

- f is a smooth approximation of the characteristic function of the time interval I.

- The \textbf{smaller} the support, the \textbf{larger} the variance.
The probability density of ψ is approximated by a Gaussian distribution

$$\mathbb{P}(\psi(f_\tau) \leq 0) \approx N(-\psi_0, 0, 1), \quad f_\tau(s) := f(s - \tau).$$

Consider a sequence $\{X_n\}_n$ of random variables such that

$$X_n \sim \psi(f_\tau) \quad \forall n,$$

- Focusing occurs.
- **Time of the first collapse** is distributed as an exponential of parameter $\lambda_\tau := \mathbb{P}(\psi(f_\tau) \leq 0)$.
- The result is qualitatively similar to the one obtained by Carlip et al.
- The larger the support of f the smaller the collapse probability due to quantum fluctuations.
Towards quantum spacetime?

- In [DFR 95] the authors find the commutation rules among the coordinates

\[[q^\mu, q^\nu] = iQ^{\mu\nu} \]

compatible with the following uncertainty relations

\[\Delta x_0 (\Delta x_1 + \Delta x_2 + \Delta x_3) \geq \lambda_P^2, \]
\[\Delta x_1 \Delta x_2 + \Delta x_2 \Delta x_3 + \Delta x_3 \Delta x_1 \geq \lambda_P^2 \]

which are obtained using the following:

Minimal Principle:

We cannot create a singularity just observing a system.

- Together with the **Heisenberg principle (HP)** (valid in Minkowski).
- The uncertainties are tailored to the flat spacetime.
In [Doplicher Morsella np 2013] the semiclassical equation in connection with that principle was used to obtain a minimal length scale in spherically symmetric spacetimes.

A model for a measuring apparatus was discussed and the preparation of the system was considered → kinematical point of view.

In the semiclassical approximation, the matter fluctuations can induce the formation of singularities.

They can be made small smearing over long time intervals.

Open task: Obtain bounds for the coordinate uncertainties relations without studying the measuring apparatus.
Summary

- Algebra of matter fields on timelike geodesics can be considered.

- Passive influence of matter fluctuation on expansion parameter can be studied within pAQFT.

- Bounds for uncertainty relations among spacetime coordinates can be studied.

Open Questions

- Can we get bounds for the validity of semiclassical equations?
- Can we do better than perturbation theory?
- Can we address intrinsic fluctuation of the expansion parameter?
- What about their influence on the matter?
- Quantum gravity solves those issues?
Thanks a lot for your attention!