Quantum formalism for systems with temporally varying discretization

Philipp Höhn

Perimeter Institute

FFP14 @ Marseille
July 18th, 2014

based on PH arXiv:1401.6062, 1401.7731 and to appear
and B. Dittrich, PH, T. Jacobson wip
Discretization changing dynamics

Discrete gravity models and lattice field theory (subject to coarse graining/refining dynamics) generically feature temporally varying discretization

- interpret as dynamical coarse graining/refining operations

 see also Dittrich, Steinhaus '13

- leads to varying number of degrees of freedom in ‘time’

How to treat evolving lattice?

1. need ‘evolving’ phase and Hilbert spaces
2. unitarity?
3. observables?
4. constraints and symmetries?

Goal: understand this systematically!
Plan of the talk

1. Classical canonical dynamics

2. Quantum formalism

3. Vacuogenesis and QG dynamics

4. Summary and Outlook
Discretization changing dynamics: global moves

- **no Hamiltonian**: discrete evolution generated by time evolution moves
- **global time evolution moves**:
 1. correspond to space-time regions
 2. boundary hypersurfaces as discrete time steps
 3. evolve entire hypersurface at once
- discrete time evolution corresponds to gluing regions along common boundaries \(\Rightarrow \) evolves future boundary
Discretization changing dynamics: global moves

- **no Hamiltonian**: discrete evolution generated by time evolution moves
- **global time evolution moves:**
 1. correspond to space-time regions
 2. boundary hypersurfaces as discrete time steps
 3. evolve entire hypersurface at once
- discrete time evolution corresponds to gluing regions along common boundaries ⇒ evolves future boundary

![Diagram showing time evolution with labeled steps and boundary hypersurfaces](image-url)
Discretization changing dynamics: global moves

- **no Hamiltonian**: discrete evolution generated by time evolution moves
- **global time evolution moves**:
 1. correspond to space-time regions
 2. boundary hypersurfaces as discrete time steps
 3. evolve entire hypersurface at once
- discrete time evolution corresponds to gluing regions along common boundaries \(\Rightarrow \) evolves future boundary

![Diagram](image-url)
Associate to every region R_k action $S_k(x_{k-1}, x_k)$
Associate to every region R_k action $S_k(x_{k-1}, x_k)$.
Classical canonical dynamics [Marsden, West '01; Gambini, Pullin '03; Dittrich, PH '11,'13]

Associate to every region R_k action $S_k(x_{k-1}, x_k)$
⇒ use as generating function

$(-p^0 := -\frac{\partial S_1(x_0, x_1)}{\partial x_0}, \quad +p^1 := \frac{\partial S_1(x_0, x_1)}{\partial x_1})$

$(-p$: pre–momenta, \quad $+p$: post–momenta)
Classical canonical dynamics

Associate to every region R_k action $S_k(x_{k-1}, x_k)$

\Rightarrow use as generating function

$(\# \text{ of } x_0) \neq (\# \text{ of } x_1) \text{ allowed}$

$-p^0 := -\frac{\partial S_1(x_0, x_1)}{\partial x_0}$, $+p^1 := \frac{\partial S_1(x_0, x_1)}{\partial x_1}$

$-p$: pre–momenta, $+p$: post–momenta

defines time evolution map

$(x_0, -p^0) \mapsto (x_1, +p^1)$
Classical canonical dynamics \[\text{[Marsden, West '01; Gambini, Pullin '03; Dittrich, PH '11,'13]}\]

Associate to every region \(R_k\) action \(S_k(x_{k-1}, x_k)\)
⇒ use as generating function \((\# \text{ of } x_0) \neq (\# \text{ of } x_1) \text{ allowed}\)

\[-p^0 := -\frac{\partial S_1(x_0, x_1)}{\partial x_0}, \quad +p^1 := \frac{\partial S_1(x_0, x_1)}{\partial x_1}\]

\(-p: \text{ pre–momenta,} \quad +p: \text{ post–momenta}\)

● defines time evolution map

\((x_0, -p^0) \mapsto (x_1, +p^1)\)

● similarly, use \(S_2(x_1, x_2)\) as gen. fct.

\[-p^1 = -\frac{\partial S_2}{\partial x_1}\]

eom \(\frac{\partial S_1}{\partial x_1} + \frac{\partial S_2}{\partial x_1} = 0 \iff +p^1 = -p^1 \text{ momentum matching}\)
Constraints in the discrete [Dittrich, PH ’11, ’13]

- evolution $0 \rightarrow 1$ defined by
 \[
 -p^0 := -\frac{\partial S_1(x_0, x_1)}{\partial x_0}, \quad +p^1 := \frac{\partial S_1(x_0, x_1)}{\partial x_1}
 \]

⇒ obtain two types of constraints if $\frac{\partial^2 S_1}{\partial x_0^i \partial x_1^j}$ has left and right null vectors
 - $+C^1(x_1, +p^1) = 0$ \Rightarrow post–constraints
 - $-C^0(x_0, -p^0) = 0$ \Rightarrow pre–constraints

- time evol. no longer unique:

 e.g., $-C^0(x_0, -p^0) = 0 \Rightarrow x_1 = x_1(x_0, -p^0, \lambda_1^m)$,

 λ_1: a priori free parameter
non-trivialities arise when gluing 2 regions: impose both $+C^1, -C^1$
generally, $+C^1 \neq -C^1$

$\{ -C_i^1, -C_j^1 \} \approx 0 \approx \{ +C_i^1, +C_j^1 \}$ but $\{ -C_i^1, +C_j^1 \} \neq 0$

possibilities at step 1:

1. $C^1 = -C^1 = +C^1 \Rightarrow 1\text{st class gauge symmetry generator}$

2. 2nd class \Rightarrow fixes free parameters

3. $-C^1$ indep. of post–constraints but 1st class \Rightarrow non-trivial coarse graining condition for data of move $0 \rightarrow 1$

4. $+C^1$ indep. of pre–constraints but 1st class \Rightarrow non-trivial coarse graining condition for data of move $1 \rightarrow 2$
non-trivialities arise when gluing 2 regions: impose both $+C^1, -C^1$
generally, $+C^1 \neq -C^1$

$\{ -C^1_i, -C^1_j \} \approx 0 \approx \{ +C^1_i, +C^1_j \}$ but $\{ -C^1_i, +C^1_j \} \neq 0$

possibilities at step 1:

1. $C^1 = -C^1 = +C^1 \Rightarrow$ 1st class gauge symmetry generator
2. 2nd class \Rightarrow fixes free parameters
3. $-C^1$ indep. of post–constraints but 1st class \Rightarrow non-trivial coarse graining condition for data of move 0 \rightarrow 1
4. $+C^1$ indep. of pre–constraints but 1st class \Rightarrow non-trivial coarse graining condition for data of move 1 \rightarrow 2
Coarse graining dynamics and pre–constraints

P. Höhn (Perimeter)
Coarse graining dynamics and pre–constraints

\[
\tilde{S}_{02} := s_1 + s_2 \quad \mid_{x_1^{sol}}
\]

\[+ C^2 \]

\[- \tilde{C}^0 \]

new

⇒ constraints ‘propagate’ and become move/region dependent

⇒ propagation of information becomes move/region dependent!
restrict to configuration spaces $Q \simeq \mathbb{R}^{N_k}$

- impose constraints in quantum theory à la Dirac: $\hat{C}|\psi_{\text{phys}}\rangle = 0$
- quantum pre-/post–constraints:
 1. self-adjoint w.r.t. $\mathcal{H}_{\text{kin}}^k = L^2(\mathbb{R}^{N_k}, dx_k)$
 2. have absolutely cont. spectrum
 3. orbits non-compact

\Rightarrow proceed by group averaging [Marolf '95, '00]:

- post–physical states: $\psi_{\text{phys}}^1 := + \mathbb{P}_1 \psi_{\text{kin}}^1 = \prod_I \delta(\hat{C}_I^1) \psi_{\text{kin}}^1$
- pre–physical states: $\psi_{\text{phys}}^0 := - \mathbb{P}_0 \psi_{\text{kin}}^0 = \prod_I \delta(-\hat{C}_I^0) \psi_{\text{kin}}^0$

$$\delta(\hat{C}) := \frac{1}{2\pi} \int ds \ e^{is\hat{C}}$$

- physical inner product on pre-/post–physical Hilbert spaces $\pm \mathcal{H}_{\text{phys}}^k$

$$\langle \pm \psi_{\text{phys}}^k | \pm \xi_{\text{phys}}^k \rangle_{\text{phys}} = \langle \psi_{\text{kin}}^k | \pm \mathbb{P}_k \xi_{\text{kin}}^k \rangle_{\text{kin}}$$
Quantum dynamics \cite{PH14}

\[
\mathcal{H}_0^{\text{kin}} \quad \text{Hohn (Perimeter)}
\]

Discretization changing dynamics
Quantum dynamics [PH ’14]

\[\mathcal{H}_0 \xrightarrow{P_0 \rightarrow 1} \mathcal{H}_1 \]

\[\mathcal{H}_0^{\text{kin}} \]

\[\mathcal{H}_1^{\text{kin}} \]

\[-\mathcal{H}_0^{\text{phys}} \]

\[+\mathcal{H}_1^{\text{phys}} \]
Quantum dynamics [PH '14]

\[
\begin{align*}
\mathcal{H}_0^\text{kin} & \quad \mathcal{H}_1^\text{kin} \\
\mathcal{H}_0^\text{phys} & \quad \mathcal{H}_1^\text{phys}
\end{align*}
\]

\[
\begin{align*}
P_0 \rightarrow & \quad P_0 \\
- & \quad - \\
+ & \quad +
\end{align*}
\]

\[
\begin{align*}
P_1 \rightarrow & \quad P_1 \\
- & \quad - \\
+ & \quad +
\end{align*}
\]
Quantum dynamics [PH '14]

\[H^{\text{kin}}_0 \to P_0 \to 0 \to P_0 \to H^{\text{phys}}_0 \]

\[H^{\text{kin}}_1 \to P_1 \to 0 \to P_1 \to H^{\text{phys}}_1 \]

\[-H^{\text{phys}}_0 \to U_{0\to1} \to +H^{\text{phys}}_1 \]

\[-P_0 \to P_0 \to +P_1 \to +P_1 \]
propagator ansatz for evolution $0 \rightarrow 1$

$$K_{0\rightarrow 1}(x_0, x_1) = M_{0\rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)}$$

e.g. projector $P_{0\rightarrow 1}$

$$+\psi_1^{\text{phys}} = P_{0\rightarrow 1} \psi_0^{\text{kin}} = \int dx_0 K_{0\rightarrow 1} \psi_0^{\text{kin}}$$

\Rightarrow requires $+\hat{C}^1 K_{0\rightarrow 1} = 0 = -\hat{C}^0(K_{0\rightarrow 1})^*$

\Rightarrow $K_{0\rightarrow 1} = +\mathbb{P}_1 (-\mathbb{P}_0)^* \kappa_{0\rightarrow 1}(x_0, x_1)$, $\kappa_{0\rightarrow 1}$ kinematical prop.
Quantum dynamics [PH '14]

- Propagator ansatz for evolution $0 \rightarrow 1$
 \[K_{0\rightarrow 1}(x_0, x_1) = M_{0\rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)} \]

- E.g. projector $P_{0\rightarrow 1}$
 \[+\psi_1^{\text{phys}} = P_{0\rightarrow 1} \psi_0^{\text{kin}} = \int d x_0 \, K_{0\rightarrow 1} \psi_0^{\text{kin}} \]

⇒ requires $+\hat{C}^1 K_{0\rightarrow 1} = 0 = -\hat{C}^0 (K_{0\rightarrow 1})^*$

⇒ $K_{0\rightarrow 1} = +P_1 (-P_0)^* \kappa_{0\rightarrow 1}(x_0, x_1), \quad \kappa_{0\rightarrow 1}$ kinematical prop.

⇒ $+\psi_1^{\text{phys}} = \int d x_0 \, K_{0\rightarrow 1} \psi_0^{\text{kin}}$
propagator ansatz for evolution $0 \rightarrow 1$

\[K_{0\rightarrow 1}(x_0, x_1) = M_{0\rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)} \]

- e.g. projector $P_{0\rightarrow 1}$

\[+\psi_{1}^{\text{phys}} = P_{0\rightarrow 1} \psi_{0}^{\text{kin}} = \int dx_0 K_{0\rightarrow 1} \psi_{0}^{\text{kin}} \]

\Rightarrow requires $+\hat{C}^1 K_{0\rightarrow 1} = 0 = -\hat{C}^0 (K_{0\rightarrow 1})^*$

$\Rightarrow K_{0\rightarrow 1} = +P_1 (-P_0)^* \kappa_{0\rightarrow 1}(x_0, x_1), \quad \kappa_{0\rightarrow 1}$ kinematical prop.

$\Rightarrow +\psi_{1}^{\text{phys}} = \int dx_0 +P_1 (-P_0)^* \kappa_{0\rightarrow 1} \psi_{0}^{\text{kin}}$
Quantum dynamics [PH '14]

- propagator ansatz for evolution $0 \rightarrow 1$

$$K_{0 \rightarrow 1}(x_0, x_1) = M_{0 \rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)}$$

- e.g. projector $P_{0 \rightarrow 1}$

$$+ \psi^\text{phys}_1 = P_{0 \rightarrow 1} \psi^\text{kin}_0 = \int dx_0 K_{0 \rightarrow 1} \psi^\text{kin}_0$$

⇒ requires $+ \hat{C}_1 K_{0 \rightarrow 1} = 0 = - \hat{C}_0 (K_{0 \rightarrow 1})^*$

⇒ $K_{0 \rightarrow 1} = + P_1 (- P_0)^* \kappa_{0 \rightarrow 1}(x_0, x_1), \quad \kappa_{0 \rightarrow 1} \text{ kinematical prop.}$

⇒ $+ \psi^\text{phys}_1 = \int dx_0 + P_1 \kappa_{0 \rightarrow 1} - P_0 \psi^\text{kin}_0$
propagator ansatz for evolution $0 \to 1$

$$K_{0\to1}(x_0, x_1) = M_{0\to1}(x_0, x_1) e^{iS_1(x_0, x_1)}$$

e.g. projector $P_{0\to1}$

$$+ \psi_1^{\text{phys}} = P_{0\to1} \psi_0^{\text{kin}} = \int dx_0 \, K_{0\to1} \psi_0^{\text{kin}}$$

\Rightarrow requires $+ \hat{C}^1 K_{0\to1} = 0 = - \hat{C}^0 (K_{0\to1})^*$

$$\Rightarrow K_{0\to1} = + \mathbb{P}_1 (- \mathbb{P}_0)^* \kappa_{0\to1}(x_0, x_1), \quad \kappa_{0\to1} \text{ kinematical prop.}$$

$$\Rightarrow + \psi_1^{\text{phys}} = \int dx_0 \, + \mathbb{P}_1 \kappa_{0\to1} - \psi_0^{\text{phys}}$$
propagator ansatz for evolution $0 \rightarrow 1$

$$K_{0\rightarrow 1}(x_0, x_1) = M_{0\rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)}$$

e.g. projector $P_{0\rightarrow 1}$

$$+\psi^\text{phys}_1 = P_{0\rightarrow 1} \psi^\text{kin}_0 = \int dx_0 K_{0\rightarrow 1} \psi^\text{kin}_0$$

\Rightarrow requires $+\hat{C}^1 K_{0\rightarrow 1} = 0 = -\hat{C}^0 (K_{0\rightarrow 1})^*$

$\Rightarrow K_{0\rightarrow 1} = +P_1 (-P_0)^* \kappa_{0\rightarrow 1}(x_0, x_1), \quad \kappa_{0\rightarrow 1}$ kinematical prop.

$\Rightarrow +\psi^\text{phys}_1 = U_{0\rightarrow 1} - \psi^\text{phys}_0$
Quantum dynamics [PH '14]

- Propagator ansatz for evolution \(0 \rightarrow 1\)

\[
K_{0 \rightarrow 1}(x_0, x_1) = M_{0 \rightarrow 1}(x_0, x_1) e^{iS_1(x_0, x_1)}
\]

- E.g. projector \(P_{0 \rightarrow 1}\)

\[
+\psi_{\text{phys}}^1 = P_{0 \rightarrow 1} \psi_{\text{kin}}^0 = \int dx_0 K_{0 \rightarrow 1} \psi_{\text{kin}}^0
\]

\(\Rightarrow\) Requires \(+\hat{C}_1 K_{0 \rightarrow 1} = 0 = -\hat{C}_0(K_{0 \rightarrow 1})^*\)

\(\Rightarrow\) \(K_{0 \rightarrow 1} = +\mathbb{P}_1 (-\mathbb{P}_0)^* \kappa_{0 \rightarrow 1}(x_0, x_1), \quad \kappa_{0 \rightarrow 1}\) [kinematical prop.]

\(\Rightarrow\) \(+\psi_{\text{phys}}^1 = U_{0 \rightarrow 1} -\psi_{\text{phys}}^0\)

- \(U_{0 \rightarrow 1}\) unitary:

\[
\langle +\psi_{\text{phys}}^1 | +\xi_{\text{phys}}^1 \rangle_{\text{phys}} = \langle -\psi_{\text{phys}}^0 | -\xi_{\text{phys}}^0 \rangle_{\text{phys}}
\]
Composition of global moves [PH '14]

non-trivialities arise when gluing 2 regions

⇒ amounts to concatenation of propagators

\[K_{0\rightarrow 2} = \int dx_1 \ K_{1\rightarrow 2} \ K_{0\rightarrow 1} \]
Composition of global moves \cite{PH14}

non-trivialities arise when gluing 2 regions

\[\Sigma_2 \]

\[\Sigma_1 \]

\[\Sigma_0 \]

\[R_2 \]

\[R_1 \]

\[\Rightarrow \text{ amounts to concatenation of propagators} \]

\[K_{0 \rightarrow 2} = \int dx_1 \; ^{+}P_2 \; \kappa_{1 \rightarrow 2} \; ^{-}P_1 \; ^{+}P_1 \; \kappa_{0 \rightarrow 1} \; ^{-}P_0 \]
Composition of global moves [PH ’14]

non-trivialities arise when gluing 2 regions
- recall constraint classification at 1:
 1. $\hat{C}^1 = +\hat{C}^1 = -\hat{C}^1$: 1st class symmetry generators
 2. 2nd class \Rightarrow solve classically
 3. $-\hat{C}_A^1$ 1st class, but indep. of $+\hat{C}^1$
 4. $+\hat{C}_B^1$ 1st class, but indep. of $-\hat{C}^1$

\Rightarrow amounts to concatenation of propagators

$$K_{0\rightarrow 2} = \int dx_1 \, +p_2 \, \kappa_{1\rightarrow 2} -p_1 +p_1 \, \kappa_{0\rightarrow 1} -p_0$$
Composition of global moves \[\text{[PH '14]}\]

non-trivialities arise when gluing 2 regions
- recall constraint classification at 1:
 1. \(\hat{C}^1 = +\hat{C}^1 = -\hat{C}^1\): 1st class symmetry generators
 2. 2nd class \(\Rightarrow\) solve classically
 3. \(-\hat{C}^1_A\) 1st class, but indep. of \(+\hat{C}^1\)
 4. \(+\hat{C}^1_B\) 1st class, but indep. of \(-\hat{C}^1\)

\(\Rightarrow\) amounts to concatenation of propagators

\[
K_{0\to2} = \int dx_1 \, +\mathbb{P}_2 \, \kappa_{1\to2} \, -\mathbb{P}^A_1 \, (\mathbb{P}_1)^2 \, +\mathbb{P}^B_1 \, \kappa_{0\to1} \, -\mathbb{P}_0
\]
Composition of global moves

non-trivialities arise when gluing 2 regions

recall constraint classification at 1:

1. \(\hat{\mathcal{C}}^1 = + \hat{\mathcal{C}}^1 = - \hat{\mathcal{C}}^1 \): 1st class symmetry generators
2. 2nd class \(\Rightarrow \) solve classically
3. \(- \hat{\mathcal{C}}_A^1 \): 1st class, but indep. of \(+ \hat{\mathcal{C}}^1 \)
4. \(+ \hat{\mathcal{C}}_B^1 \): 1st class, but indep. of \(- \hat{\mathcal{C}}^1 \)

\(\Rightarrow \) amounts to concatenation of propagators

\[K_{0 \rightarrow 2} = \int dx_1 \, +P_2 \kappa_{1 \rightarrow 2} - P^A_1 (P_1)^2 + P^B_1 \kappa_{0 \rightarrow 1} - P_0 \]

“\((P_1)^2 \rightarrow \infty\)” (integration over non-compact gauge orbit)
Composition of global moves \cite{PH14}

non-trivialities arise when gluing 2 regions

\begin{itemize}
\item recall constraint classification at 1:
\begin{enumerate}
\item $\hat{\mathcal{C}}^1 = +\hat{\mathcal{C}}^1 = -\hat{\mathcal{C}}^1$: 1st class symmetry generators
\item 2nd class \Rightarrow solve classically
\item $-\hat{\mathcal{C}}^1_A$ 1st class, but indep. of $+\hat{\mathcal{C}}^1$
\item $+\hat{\mathcal{C}}^1_B$ 1st class, but indep. of $-\hat{\mathcal{C}}^1$
\end{enumerate}
\end{itemize}

\Rightarrow amounts to concatenation of propagators

$$K_{0\rightarrow2} = \int dx_1 +\mathbb{P}_2 \kappa_{1\rightarrow2} -\mathbb{P}^A_1 \mathbb{P}_1 +\mathbb{P}^B_1 \kappa_{0\rightarrow1} -\mathbb{P}_0$$

"$(\mathbb{P}_1)^2 \rightarrow \infty$" (integration over non-compact gauge orbit)

\Rightarrow regularize by dropping one instance of \mathbb{P}_1
non-trivialities arise when gluing 2 regions

- recall constraint classification at 1:
 1. $\hat{C}^1 = +\hat{C}^1 = -\hat{C}^1$: 1st class symmetry generators
 2. 2nd class \Rightarrow solve classically
 3. $-\hat{C}_A^1$ 1st class, but indep. of $+\hat{C}^1$
 4. $+\hat{C}_B^1$ 1st class, but indep. of $-\hat{C}^1$

\Rightarrow amounts to concatenation of propagators

$$K_{0\to2} = \int dx_1 +P_2^{\kappa_{1\to2}} -P_A^1 P_1^1 +P_B^1 \kappa_{0\to1} -P_0^0$$

- new effective constraints $-\hat{C}^0$, $+\hat{C}^2$ also arise in QT
Composition of global moves [PH '14]

non-trivialities arise when gluing 2 regions

- recall constraint classification at 1:
 1. $\hat{C}^1 = +\hat{C}^1 = -\hat{C}^1$: 1st class symmetry generators
 2. 2nd class \Rightarrow solve classically
 3. $-\hat{C}_A^1$ 1st class, but indep. of $+\hat{C}^1$
 4. $+\hat{C}_B^1$ 1st class, but indep. of $-\hat{C}^1$

\Rightarrow amounts to concatenation of propagators

$$K_{0\to2} = \int dx_1 \; +P_2 \kappa_{1\to2} -P_1^A P_1 +P_1^B \kappa_{0\to1} -P_0$$

- new effective constraints $-\tilde{C}^0$, $+\tilde{C}^2$ also arise in QT

\Rightarrow non-unitary projections physical Hilbert spaces

$+\tilde{H}^\text{phys}_2 := +\tilde{P}_2 \left(+H^\text{phys}_2 \right)$ and $-\tilde{H}^\text{phys}_0 := -\tilde{P}_0 \left(-H^\text{phys}_0 \right)$

\Rightarrow non-trivial dynamical coarse graining of discretization
non-trivialities arise when gluing 2 regions

- recall constraint classification at 1:
 1. $\hat{\mathcal{C}}^1 = + \hat{\mathcal{C}}^1 = - \hat{\mathcal{C}}^1$: 1st class symmetry generators
 2. 2nd class \Rightarrow solve classically
 3. $-\hat{\mathcal{C}}^1_A$: 1st class, but indep. of $+\hat{\mathcal{C}}^1$
 4. $+\hat{\mathcal{C}}^1_B$: 1st class, but indep. of $-\hat{\mathcal{C}}^1$

\Rightarrow amounts to concatenation of propagators

$$K_{0\to2} = \int d\chi_1 +\mathbb{P}_2 \kappa_{1\to2} -\mathbb{P}_1^A \mathbb{P}_1 +\mathbb{P}_1^B \kappa_{0\to1} -\mathbb{P}_0$$

- new effective constraints $-\hat{\mathcal{C}}^0$, $+\hat{\mathcal{C}}^2$ also arise in QT

\Rightarrow non-unitary projections physical Hilbert spaces

$+\hat{\mathcal{H}}_2^{\text{phys}} := +\mathbb{P}_2 (+\mathcal{H}_2^{\text{phys}})$ and $-\hat{\mathcal{H}}_0^{\text{phys}} := -\mathbb{P}_0 (-\mathcal{H}_0^{\text{phys}})$

\Rightarrow non-trivial dynamical coarse graining of discretization

\Rightarrow physical Hilbert spaces associated to (boundary) of region (rather than time step) as in ‘general boundary formulation’ [Oeckl ’03, ’08]
Physical dofs on varying discretizations [Dittrich, PH '13; PH '14]

- Propagating dofs must commute with constraints, to be well-defined on $-\mathcal{H}_1^{\text{phys}} / +\mathcal{H}_1^{\text{phys}}$

1. Pre-observables $-\hat{O}^1$: $[-\hat{C}^i, -\hat{O}^1] = 0$

2. Post-observables $+\hat{O}^1$: $[+\hat{C}^i, +\hat{O}^1] = 0$

\[
\begin{align*}
\text{integrate} & \\
S_2 & : +\hat{O}^2(\hat{x}_2, +\hat{p}^2) & 2 \\
S_1 & : -\hat{O}^1(\hat{x}_1, -\hat{p}^1) & 1 \\
S_2 & : +\hat{O}^1(\hat{x}_1, +\hat{p}^1) & 1 \\
S_1 & : -\hat{O}^0(\hat{x}_0, -\hat{p}^0) & 0 \\
\end{align*}
\]
propagating dofs must commute with constraints, to be well-defined on $-\mathcal{H}_1^\text{phys}/+\mathcal{H}_1^\text{phys}$

1. pre–observables $-\hat{O}^1$: $[-\hat{C}_i^1, -\hat{O}^1] = 0$
2. post–observables $+\hat{O}^1$: $[+\hat{C}_i^1, +\hat{O}^1] = 0$

integrating out 1: $-\hat{O}^0/+\hat{O}^2$ must commute with new $-\hat{C}^0, +\hat{C}^2$

\Rightarrow ‘too finely grained’ dofs do not commute with new constraints
\Rightarrow dynamical coarse graining projects out dofs irreversibly
idea: newly added modes ‘Euclideanized’, born in vacuum

(almost) trivial toy model:
‘nothing’ \rightarrow scalar field on single vertex

\[S_1 = \frac{1}{2} \phi_1^2 \quad \rightarrow \quad S_{\text{eucl}}^1 = \frac{1}{2} i \phi_1^2 \]

post–constraint as annihilation operator:

\[i^+ \hat{C}_{\text{eucl}}^1 = \hat{a} = \hat{\phi}_1 + i \hat{\rho}_1 \]

\(\Rightarrow \) post–physical state is unique (Gaussian) vacuum state

\[+ \psi_1^{\text{phys}} \sim e^{-\frac{1}{2} \phi_1^2} \]

more complicated for large lattice
Discretization changing dynamics in QG [Dittrich, Steinhaus '13, PH '14]

so far:

states evolve in background time (e.g. lattice field theory)

in QG:

physical states ‘timeless’, do **not** evolve in external time

⇒ time evolution relational

⇒ discrete state evolution not ‘time evolution’

⇒ discretization changing dynamics = coarse graining/refining

3D

- diffeo sym. perserved
- ‘evolution’ as change of representation

4D

- sym. broken
- non-unitary coarse graining
- refining non-hyperbolic

⇒ need ‘dynamical cylindrical consistency’ as in Dittrich '12, Dittrich, Steinhaus '13
Summary and Outlook

- systematic classical and quantum formalism for discretization changing dynamics available
- constraints, observables, Hilbert spaces, ... region dependent
- non-trivial coarse graining \Rightarrow non-unitary projections of physical Hilbert spaces and observables
- analogously with Pachner move dynamics

goal: better understand

1. discretization changing dynamics in QG
2. ‘vacuogenesis’