Causal Structure for Noncommutative Geometry

Michał Eckstein
Jagellonian University & Copernicus Center, Kraków, Poland

Joint project with Nicolas Franco (CC, Kraków)

Marseille, 16th July 2014
Noncommutative geometry à la Connes = spectral triples

1. Algebratisation of the Riemannian geometry
2. Testing the concepts - new noncommutative horizons
3. Applications - particle physics, cosmology, ...

Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian rather than Riemannian
- We loose the causal structure
- Applications - need for a Wick rotation \((t \rightarrow it)\)

Lorentzian spectral triples - a remedy?

1. Algebratisation of the causal structure
2. Testing the concepts - almost-commutative space-times
3. Applications - ... ?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebraisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation \((t \rightarrow it)\)

- Lorentzian spectral triples - a remedy?
 1. Algebraisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebraisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation ($t \rightarrow it$)

- Lorentzian spectral triples - a remedy?
 1. Algebraisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ... ?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebraisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 1. Relativistic physics is Lorentzian rather than Riemannian
 2. We lose the causal structure
 3. Applications - need for a Wick rotation ($t \rightarrow it$)

- Lorentzian spectral triples - a remedy?
 1. Algebraisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebraisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 1. Relativistic physics is Lorentzian rather than Riemannian
 2. We lose the causal structure
 3. Applications - need for a Wick rotation \((t \rightarrow it)\)

- Lorentzian spectral triples - a remedy?
 1. Algebraisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. **Algebraisation** of the Riemannian geometry
 2. **Testing the concepts** - new noncommutative horizons
 3. **Applications** - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation ($t \rightarrow it$)

- Lorentzian spectral triples - a remedy?
 1. **Algebraisation** of the causal structure
 2. **Testing the concepts** - almost-commutative space-times
 3. **Applications** - ... ?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. **Algebratisation** of the Riemannian geometry
 2. **Testing the concepts** - new noncommutative horizons
 3. **Applications** - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 1. Relativistic physics is Lorentzian rather than Riemannian
 2. We lose the causal structure
 3. Applications - need for a Wick rotation \((t \rightarrow it)\)

- Lorentzian spectral triples - a remedy?
 1. **Algebratisation** of the causal structure
 2. **Testing the concepts** - almost-commutative space-times
 3. **Applications** - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebraisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 1. Relativistic physics is Lorentzian rather than Riemannian
 2. We loose the causal structure
 3. Applications - need for a Wick rotation \((t \rightarrow it)\)

- Lorentzian spectral triples - a remedy?
 1. Algebraisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ...?
Noncommutative geometry à la Connes = spectral triples

1. Algebraisation of the Riemannian geometry
2. Testing the concepts - new noncommutative horizons
3. Applications - particle physics, cosmology, ...

Drawbacks of the standard spectral approach

- Relativistic physics is Lorentzian rather than Riemannian
- We lose the causal structure
- Applications - need for a Wick rotation \((t \rightarrow it)\)

Lorentzian spectral triples - a remedy?

1. Algebraisation of the causal structure
2. Testing the concepts - almost-commutative space-times
3. Applications - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. Algebratisation of the Riemannian geometry
 2. Testing the concepts - new noncommutative horizons
 3. Applications - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation ($t \to it$)

- Lorentzian spectral triples - a remedy?
 1. Algebrisation of the causal structure
 2. Testing the concepts - almost-commutative space-times
 3. Applications - ... ?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. **Algebraisation** of the Riemannian geometry
 2. **Testing the concepts** - new noncommutative horizons
 3. **Applications** - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation ($t \rightarrow it$)

- Lorentzian spectral triples - a remedy?
 1. **Algebraisation** of the causal structure
 2. **Testing the concepts** - almost-commutative space-times
 3. Applications - ...?
Introduction & motivation

- Noncommutative geometry à la Connes = spectral triples
 1. **Algebraisation** of the Riemannian geometry
 2. **Testing the concepts** - new noncommutative horizons
 3. **Applications** - particle physics, cosmology, ...

- Drawbacks of the standard spectral approach
 - Relativistic physics is Lorentzian rather than Riemannian
 - We lose the causal structure
 - Applications - need for a Wick rotation ($t \rightarrow it$)

- Lorentzian spectral triples - a remedy?
 1. **Algebraisation** of the causal structure
 2. **Testing the concepts** - almost-commutative space-times
 3. **Applications** - ... ?
Outline

1. Introduction & motivation
2. Noncommutative geometry
3. Causal structures
4. Testing the concepts – almost commutative causality
5. Summary
The axioms of noncommutative geometry

\((\mathcal{A}, \mathcal{H}, \mathcal{D})\) - spectral triple

- \(\mathcal{A}\) - pre-\(C^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space
 \(\exists\) a faithful representation \(\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})\)
- \(\mathcal{D}\) - the Dirac operator - selfadjoint, unbounded
 - \((\mathcal{D} - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\) for all \(a \in \mathcal{A}\)
- \(\ldots\)
- The spectrum of Lorentzian \(\mathcal{D}\) is way more complicated
The axioms of noncommutative geometry

\((A, \mathcal{H}, D)\) - spectral triple

- \(A\) - pre-\(C^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space
 \(\exists\) a faithful representation \(\pi(A) \subset B(\mathcal{H})\)
- \(D\) - the Dirac operator - selfadjoint, unbounded
 - \((D - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([D, \pi(a)] \in B(\mathcal{H})\) for all \(a \in A\)
- ...

- The spectrum of Lorentzian \(D\) is way more complicated
The axioms of noncommutative geometry

\((\mathcal{A}, \mathcal{H}, \mathcal{D})\) - spectral triple

- \(\mathcal{A}\) - pre-\(C^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space (need for indefinite products)
 \(\exists\) a faithful representation \(\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})\)
- \(\mathcal{D}\) - the Dirac operator - selfadjoint, unbounded
 - \((\mathcal{D} - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\) for all \(a \in \mathcal{A}\)
- ...

- The spectrum of Lorentzian \(\mathcal{D}\) is way more complicated
The axioms of noncommutative geometry

\((\mathcal{A}, \mathcal{H}, \mathcal{D})\) - spectral triple

- \(\mathcal{A}\) - pre-\(\mathcal{C}^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space (need for indefinite products)
 \(\exists\) a faithful representation \(\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})\)
- \(\mathcal{D}\) - the Dirac operator - selfadjoint, unbounded
 - \((\mathcal{D} - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\) for all \(a \in \mathcal{A}\)

- ...

- The spectrum of Lorentzian \(\mathcal{D}\) is way more complicated
The axioms of noncommutative geometry

\[(\mathcal{A}, \mathcal{H}, \mathcal{D})\] - spectral triple

- \(\mathcal{A}\) - pre-\(C^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space \((\text{need for indefinite products})\)
 \(\exists\) a faithful representation \(\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})\)
- \(\mathcal{D}\) - the Dirac operator - selfadjoint, unbounded
 - \((\mathcal{D} - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\) for all \(a \in \mathcal{A}\)
- \(\ldots\)
- The spectrum of Lorentzian \(\mathcal{D}\) is way more complicated
The axioms of noncommutative geometry

\((\mathcal{A}, \mathcal{H}, \mathcal{D})\) - spectral triple

- \(\mathcal{A}\) - pre-\(C^*\)-algebra (unital)
- \(\mathcal{H}\) - Hilbert space (need for indefinite products)
 \(\exists\) a faithful representation \(\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})\)
- \(\mathcal{D}\) - the Dirac operator - selfadjoint, unbounded
 - \((\mathcal{D} - \lambda)^{-1}\) for any \(\lambda \notin \mathbb{R}\) - compact resolvent
 - \([\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})\) for all \(a \in \mathcal{A}\)
- ...
- The spectrum of Lorentzian \(\mathcal{D}\) is way more complicated
Lorentzian spectral triples

\((\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, D, J) \) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H} \).
- A non-unital pre-\(C^* \)-algebra \(\mathcal{A} \) with a faithful representation on \(B(\mathcal{H}) \).
- A preferred unitisation \(\tilde{\mathcal{A}} \) of \(\mathcal{A} \) which is a pre-\(C^* \)-algebra with a faithful representation on \(\mathcal{H} \) and such that \(\mathcal{A} \) is an ideal of \(\tilde{\mathcal{A}} \).
- An unbounded operator \(D \) densely defined on \(\mathcal{H} \) such that:
 - \(\forall a \in \tilde{\mathcal{A}} \ [D, a] \) extends to a bounded operator on \(\mathcal{H} \),
 - \(\forall a \in \mathcal{A} \ a(\Delta_J^{-1}) \) is compact, with \(\Delta_J := (\frac{1}{2}(DD^* + D^*D) + 1)^{1/2} \).
- A bounded operator \(J \) on \(\mathcal{H} \) - fundamental symmetry - such that:
 - \(J^2 = 1, J^* = J \),
 - \([J, a] = 0 \ \forall a \in \tilde{\mathcal{A}} \),
 - \(D^* = -J D \),
 - \(J \) captures the Lorentzian signature of the metric \([N. Franco, M.E. (2014b)]: J = -N[D, T] \), with \(N \in \tilde{\mathcal{A}}^+, T \in \mathcal{L}(\mathcal{H}) \).
Lorentzian spectral triples

\((A, \tilde{A}, H, D, J) \) - Lorentzian spectral triple

- A Hilbert space \(H \).
- A non-unital pre-\(C^* \)-algebra \(A \) with a faithful representation on \(B(H) \).
- A *preferred* unitisation \(\tilde{A} \) of \(A \) which is a pre-\(C^* \)-algebra with a faithful representation on \(H \) and such that \(A \) is an ideal of \(\tilde{A} \).
- An unbounded operator \(D \) densely defined on \(H \) such that:
 - \(\forall a \in \tilde{A} \) \([D, a] \) extends to a bounded operator on \(H \),
 - \(\forall a \in A \) \(a\Delta^{-1}_J \) is compact, with \(\Delta_J := (\frac{1}{2}(DD^* + D^*D) + 1)^{1/2} \).
- A bounded operator \(J \) on \(H \) - fundamental symmetry - such that:
 - \(J^2 = 1 \), \(J^* = J \),
 - \([J, a] = 0 \) \(\forall a \in \tilde{A} \),
 - \(D^* = -JDJ \),
 - \(J \) captures the Lorentzian signature of the metric \([N. Franco, M.E. (2014b)] : J = -N[D, T] \), with \(N \in \tilde{A} \), \(T \in \mathcal{L}(H) \).
Lorentzian spectral triples

\((\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, D, J)\) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H}\).
- A non-unital pre-\(C^*\)-algebra \(\mathcal{A}\) with a faithful representation on \(\mathcal{B}(\mathcal{H})\).
- A \textit{preferred} unitisation \(\tilde{\mathcal{A}}\) of \(\mathcal{A}\) which is a pre-\(C^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(\mathcal{A}\) is an ideal of \(\tilde{\mathcal{A}}\).
- An unbounded operator \(D\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \tilde{\mathcal{A}}\) \([D, a]\) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in \mathcal{A}\) \(a\Delta_J^{-1}\) is compact, with \(\Delta_J := \left(\frac{1}{2}(DD^* + D^*D) + 1\right)^{1/2}\).
- A bounded operator \(J\) on \(\mathcal{H}\) - fundamental symmetry - such that:
 - \(J^2 = 1, J^* = J,\)
 - \([J, a] = 0 \ \forall a \in \tilde{\mathcal{A}}\),
 - \(D^* = -JDJ\),
 - \(J\) captures the Lorentzian signature of the metric [N. Franco, M.E. (2004b)]: \(J = -N[D, T]\), with \(N \in \tilde{\mathcal{A}}, T \in \mathcal{L}(\mathcal{H})\).
Lorentzian spectral triples

\((\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H}\).
- A non-unital pre-\(C^*\)-algebra \(\mathcal{A}\) with a faithful representation on \(\mathcal{B}(\mathcal{H})\).
- A \emph{preferred} unitisation \(\tilde{\mathcal{A}}\) of \(\mathcal{A}\) which is a pre-\(C^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(\mathcal{A}\) is an ideal of \(\tilde{\mathcal{A}}\).
- An unbounded operator \(\mathcal{D}\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \tilde{\mathcal{A}}\) \([\mathcal{D}, a]\) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in \mathcal{A}\) \(a\Delta^{-1}_{\mathcal{J}}\) is compact, with \(\Delta^{-1}_{\mathcal{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}\).
- A bounded operator \(\mathcal{J}\) on \(\mathcal{H}\) - fundamental symmetry - such that:
 - \(\mathcal{J}^2 = 1, \mathcal{J}^* = \mathcal{J}\),
 - \([\mathcal{J}, a] = 0\) \(\forall a \in \tilde{\mathcal{A}}\),
 - \(\mathcal{D}^* = -\mathcal{J}\mathcal{D}\mathcal{J}\),
 - \(\mathcal{J}\) captures the Lorentzian signature of the metric

\[[N. Franco, M.E. (2014b)]: \mathcal{J} = -N[\mathcal{D}, \mathcal{T}], \text{ with } N \in \tilde{\mathcal{A}}, \mathcal{T} \in \mathcal{L}(\mathcal{H}). \]
Lorentzian spectral triples

\((\mathcal{A}, \widetilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H}\).
- A non-unital pre-\(C^*\)-algebra \(\mathcal{A}\) with a faithful representation on \(\mathcal{B}(\mathcal{H})\).
- A \textit{preferred} unitisation \(\widetilde{\mathcal{A}}\) of \(\mathcal{A}\) which is a pre-\(C^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(\mathcal{A}\) is an ideal of \(\widetilde{\mathcal{A}}\).
- An unbounded operator \(\mathcal{D}\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \widetilde{\mathcal{A}}\ [\mathcal{D}, a] \) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in \mathcal{A}\ a\Delta_{\mathcal{J}}^{-1} \) is compact, with \(\Delta_{\mathcal{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}\).
- A bounded operator \(\mathcal{J}\) on \(\mathcal{H}\) - fundamental symmetry - such that:
 - \(\mathcal{J}^2 = 1, \mathcal{J}^* = \mathcal{J}\),
 - \([\mathcal{J}, a] = 0 \ \forall a \in \widetilde{\mathcal{A}},\)
 - \(\mathcal{D}^* = -\mathcal{J}\mathcal{D}\mathcal{J},\)
 - \(\mathcal{J}\) captures the Lorentzian signature of the metric

\[[N. Franco, M.E. (2014b)] \quad \mathcal{J} = -N[D, T], \quad \text{with} \quad N \in \widetilde{\mathcal{A}}, T \in \mathcal{L}(\mathcal{H}).\]
Lorentzian spectral triples

\[(\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J}) - \text{Lorentzian spectral triple}\]

- A Hilbert space \(\mathcal{H}\).
- A non-unital pre-\(\mathcal{C}^*\)-algebra \(\mathcal{A}\) with a faithful representation on \(\mathcal{B}(\mathcal{H})\).
- A preferred unitisation \(\tilde{\mathcal{A}}\) of \(\mathcal{A}\) which is a pre-\(\mathcal{C}^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(\mathcal{A}\) is an ideal of \(\tilde{\mathcal{A}}\).
- An unbounded operator \(\mathcal{D}\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \tilde{\mathcal{A}}\) \([\mathcal{D}, a]\) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in \mathcal{A}\) \(a\Delta^{-1}_\mathcal{J}\) is compact, with \(\Delta^{-1}_\mathcal{J} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}\).
- A bounded operator \(\mathcal{J}\) on \(\mathcal{H}\) - fundamental symmetry - such that:
 - \(\mathcal{J}^2 = 1, \mathcal{J}^* = \mathcal{J}\),
 - \([\mathcal{J}, a] = 0\) \(\forall a \in \tilde{\mathcal{A}}\),
 - \(\mathcal{D}^* = -\mathcal{J}\mathcal{D}\mathcal{J}\),
 - \(\mathcal{J}\) captures the Lorentzian signature of the metric
 \[[N. Franco, M.E., (2014b)]: \mathcal{J} = -N[\mathcal{D}, \mathcal{T}], \text{ with } N \in \tilde{\mathcal{A}}\text{, } \mathcal{T} \in \mathcal{L}(\mathcal{H})\].
Lorentzian spectral triples

\((\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H}\).
- A non-unital pre-\(C^*\)-algebra \(\mathcal{A}\) with a faithful representation on \(\mathcal{B}(\mathcal{H})\).
- A *preferred* unitisation \(\tilde{\mathcal{A}}\) of \(\mathcal{A}\) which is a pre-\(C^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(\mathcal{A}\) is an ideal of \(\tilde{\mathcal{A}}\).
- An unbounded operator \(\mathcal{D}\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \tilde{\mathcal{A}}\ [\mathcal{D}, a]\) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in \mathcal{A}\ a\Delta_{\mathcal{J}}^{-1}\) is compact, with \(\Delta_{\mathcal{J}} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}\).
- A bounded operator \(\hat{\mathcal{J}}\) on \(\mathcal{H}\) - fundamental symmetry - such that:
 - \(\hat{\mathcal{J}}^2 = 1, \hat{\mathcal{J}}^* = \hat{\mathcal{J}}\),
 - \([\hat{\mathcal{J}}, a] = 0\ \forall a \in \tilde{\mathcal{A}}\),
 - \(\mathcal{D}^* = -\hat{\mathcal{J}}\mathcal{D}\hat{\mathcal{J}}\),
 - \(\hat{\mathcal{J}}\) captures the Lorentzian signature of the metric
 \([N. \ Franco, M.E. (2014b)]: \hat{\mathcal{J}} = -N[\mathcal{D}, \mathcal{T}], \text{ with } N \in \tilde{\mathcal{A}}^+, \mathcal{T} \in \mathcal{L}(\mathcal{H})\).
Lorentzian spectral triples

\((A, \tilde{A}, \mathcal{H}, \mathcal{D}, \mathcal{J})\) - Lorentzian spectral triple

- A Hilbert space \(\mathcal{H}\).

- A non-unital pre-\(C^*\)-algebra \(A\) with a faithful representation on \(B(\mathcal{H})\).

- A \textit{preferred} unitisation \(\tilde{A}\) of \(A\) which is a pre-\(C^*\)-algebra with a faithful representation on \(\mathcal{H}\) and such that \(A\) is an ideal of \(\tilde{A}\).

- An unbounded operator \(\mathcal{D}\) densely defined on \(\mathcal{H}\) such that:
 - \(\forall a \in \tilde{A}, [\mathcal{D}, a] \) extends to a bounded operator on \(\mathcal{H}\),
 - \(\forall a \in A\), \(a\Delta_\mathcal{J}^{-1}\) is compact, with \(\Delta_\mathcal{J} := \left(\frac{1}{2}(\mathcal{D}\mathcal{D}^* + \mathcal{D}^*\mathcal{D}) + 1\right)^{1/2}\).

- A bounded operator \(\mathcal{J}\) on \(\mathcal{H}\) - \textit{fundamental symmetry} - such that:
 - \(\mathcal{J}^2 = 1, \mathcal{J}^* = \mathcal{J}\),
 - \([\mathcal{J}, a] = 0 \ \forall a \in \tilde{A}\),
 - \(\mathcal{D}^* = -\mathcal{J}\mathcal{D}\mathcal{J}\),
 - \(\mathcal{J}\) \textit{captures the Lorentzian signature of the metric} \([\text{N. Franco, M.E. (2014b)}]: \mathcal{J} = -N[\mathcal{D}, \mathcal{T}], \text{ with } N \in \tilde{A}^+, \mathcal{T} \in \mathcal{L}(\mathcal{H})\).
Lorentzian spectral triples

\((A, \tilde{A}, H, D, J) - \text{Lorentzian spectral triple}\)

- A Hilbert space \(H\).
- A non-unital pre-\(C^*\)-algebra \(A\) with a faithful representation on \(B(H)\).
- A \textit{preferred} unitisation \(\tilde{A}\) of \(A\) which is a pre-\(C^*\)-algebra with a faithful representation on \(H\) and such that \(A\) is an ideal of \(\tilde{A}\).
- An unbounded operator \(D\) densely defined on \(H\) such that:
 - \(\forall a \in \tilde{A} \ [D, a]\) extends to a bounded operator on \(H\),
 - \(\forall a \in A \ a\Delta^{-1}_J\) is compact, with \(\Delta^i_J := \left(\frac{1}{2}(DD^* + D^*D) + 1\right)^{1/2}\).
- A bounded operator \(\hat{J}\) on \(H\) - \textit{fundamental symmetry} - such that:
 - \(\hat{J}^2 = 1, \hat{J}^* = \hat{J}\),
 - \([\hat{J}, a] = 0 \ \forall a \in \tilde{A}\),
 - \(D^* = -\hat{J}D\hat{J}\),
 - \(\hat{J}\) \textit{captures the Lorentzian signature of the metric} [N. Franco, M.E. (2014b)]: \(\hat{J} = -N[D, T]\), with \(N \in \tilde{A}^+, \ T \in \mathcal{L}(H)\).
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C_0^\infty(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C_b^\infty(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 - Indefinite: $(f, g) = \int_M (f_x, g_x)x \sqrt{|g|} d^n x$.
 - Positive definite: $\langle f, g \rangle := (f, J_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
 $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \tilde{J}_r - fundamental symmetry associated with r
 $$\tilde{J}_r c(e_0) \tilde{J}_r = -c(re_0), \quad \tilde{J}_r = ic(e_0) = i\gamma^0$$

- $D = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\widetilde{\mathcal{A}} \subset C^\infty_0(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 - Indefinite: $(f, g) = \int_M (f_x, g_x)_x \sqrt{|g|} d^n x$.
 - Positive definite: $\langle f, g \rangle := (f, \mathcal{J}_r g)$.
- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r\cdot, r\cdot) = g(\cdot, \cdot)$
 $g^r(\cdot, \cdot) := g(\cdot, r\cdot)$ – positive definite metric on $TM = F^- \oplus F^+$
- \mathcal{J}_r – fundamental symmetry associated with r
 $\mathcal{J}_r c(e_0) \mathcal{J}_r = -c(re_0)$, $\mathcal{J}_r = ic(e_0) = i\gamma^0$
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_\mu$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold \mathcal{M}:

- $\mathcal{A} \subset C^\infty_0(\mathcal{M})$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(\mathcal{M})$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(\mathcal{M}, S)$ – space of square integrable spinor sections over \mathcal{M}.
- Non-degenerate products on \mathcal{H}:
 - Indefinite: $(f, g) = \int_\mathcal{M} (f_x, g_x) x \sqrt{|g|} d^n x$.
 - Positive definite: $\langle f, g \rangle := (f, \mathcal{J}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
 $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \mathcal{J}_r - fundamental symmetry associated with r
 $$\mathcal{J}_r c(e_0) \mathcal{J}_r = -c(re_0), \quad \mathcal{J}_r = ic(e_0) = i\gamma^0$$
- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.

- Non-degenerate products on \mathcal{H}:
 - Indefinite: $(f, g) = \int_M (f_x, g_x)_x \sqrt{|g|} d^n x$.
 - Positive definite: $\langle f, g \rangle := (f, J_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
 - $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$

- \mathcal{J}_r - fundamental symmetry associated with r
 \[\mathcal{J}_r c(e_0) = -c(r e_0), \quad \mathcal{J}_r = i c(e_0) = i \gamma^0 \]

- $D = -i(c \circ \nabla^S) = -i \gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C_0^\infty(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C_b^\infty(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 1. Indefinite: $(f, g) = \int_M (f_x, g_x)_x \sqrt{|g|} d^n x$.
 2. Positive definite: $\langle f, g \rangle := (f, \tilde{J}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
 $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \tilde{J}_r - fundamental symmetry associated with r
 \[\tilde{J}_r c(e_0) \tilde{J}_r = -c(re_0), \quad \tilde{J}_r = ic(e_0) = i\gamma^0 \]

- $D = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu} \quad$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 1. Indefinite: $(f, g) = \int_M (f_x, g_x) x \sqrt{|g|} d^n x$.
 2. Positive definite: $\langle f, g \rangle := (f, \tilde{\mathcal{J}}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
 $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- $\tilde{\mathcal{J}}_r$ - fundamental symmetry associated with r
 $$\tilde{\mathcal{J}}_r c(e_0) \tilde{\mathcal{J}}_r = -c(re_0), \quad \tilde{\mathcal{J}}_r = ic(e_0) = i\gamma^0$$
- $D = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_\mu$ – the Dirac operator.
A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 1. Indefinite: $(f, g) = \int_M (f_x, g_x)_x \sqrt{|g|} \, d^n x$.
 2. Positive definite: $\langle f, g \rangle := (f, \tilde{J}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
- $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$
- \tilde{J}_r - fundamental symmetry associated with r
- $\tilde{J}_r e_0 \tilde{J}_r = -c(r e_0), \quad \tilde{J}_r = i c(e_0) = i \gamma^0$

- $\mathcal{D} = -i(c \circ \nabla^S) = -i \gamma^\mu \nabla^S_\mu$ – the Dirac operator.
A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:

 1. Indefinite: $(f, g) = \int_M (f_x, g_x) \sqrt{|g|} d^n x$.
 2. Positive definite: $\langle f, g \rangle := (f, \mathcal{J}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r\cdot, r\cdot) = g(\cdot, \cdot)$

 $g^r(\cdot, \cdot) := g(\cdot, r\cdot)$ - positive definite metric on $TM = F^- \oplus F^+$

- \mathcal{J}_r - fundamental symmetry associated with r

 $\mathcal{J}_r c(e_0) \mathcal{J}_r = -c(re_0), \quad \mathcal{J}_r = i c(e_0) = i \gamma^0$

- $D = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
Globally hyperbolic manifold

A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C^\infty_0(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.
- Non-degenerate products on \mathcal{H}:
 1. Indefinite: $(f, g) = \int_M (f_x, g_x)_x \sqrt{|g|} d^nx$.
 2. Positive definite: $\langle f, g \rangle := (f, \mathcal{J}_r g)$.

- Spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$
- $g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ – positive definite metric on $TM = F^- \oplus F^+$
- \mathcal{J}_r - fundamental symmetry associated with r

 $\mathcal{J}_r c(e_0) \mathcal{J}_r = -c(re_0)$, \hspace{1cm} $\mathcal{J}_r = ic(e_0) = i\gamma^0$

- $\mathcal{D} = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
A commutative Lorentzian spectral triple on a Lorentzian manifold M:

- $\mathcal{A} \subset C_0^\infty(M)$ – smooth functions vanishing at ∞.
- $\tilde{\mathcal{A}} \subset C^\infty_b(M)$ – smooth bounded functions with all derivatives bounded.
- $\mathcal{H} = L^2(M, S)$ – space of square integrable spinor sections over M.

Non-degenerate products on \mathcal{H}:

1. Indefinite: $(f, g) = \int_M (f_x, g_x) x \sqrt{|g|} d^n x$.
2. Positive definite: $\langle f, g \rangle := (f, \mathcal{J}_r g)$.

spacelike reflection $r \in \text{Aut}(TM)$, $r^2 = 1$, $g(r \cdot, r \cdot) = g(\cdot, \cdot)$

$g^r(\cdot, \cdot) := g(\cdot, r \cdot)$ - positive definite metric on $TM = F^- \oplus F^+$

\mathcal{J}_r - fundamental symmetry associated with r

\[\mathcal{J}_r c(e_0) \mathcal{J}_r = -c(re_0), \quad \mathcal{J}_r = ic(e_0) = i\gamma^0 \]

$D = -i(c \circ \nabla^S) = -i\gamma^\mu \nabla^S_{\mu}$ – the Dirac operator.
Outline

1. Introduction & motivation
2. Noncommutative geometry
3. Causal structures
4. Testing the concepts – almost commutative causality
5. Summary
Causality - a reminder

- Two points p, q are **causally related** $p \preceq q$ iff $p = q$ or \exists a future directed causal curve linking p and q.

- \preceq induces a partial order relation on the set of points of M.

- **Global hyperbolicity** \implies no closed causal curves

Theorem [Geroch (1967)]
Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]
M globally hyperbolic $\iff M \simeq \mathbb{R} \times S$ (i.e. there exists global time)
Causality - a reminder

- Two points p, q are **causally related** $p \preceq q$ iff $p = q$ or \exists a future directed causal curve linking p and q.
- \preceq induces a partial order relation on the set of points of M.

- **Global hyperbolicity** \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]

M globally hyperbolic $\iff M \simeq \mathbb{R} \times S$ (i.e. there exists global time)
Causality - a reminder

- Two points p, q are **causally related** $p \preceq q$ iff $p = q$ or \exists a future directed causal curve linking p and q.

- \preceq induces a partial order relation on the set of points of M.

- **Global hyperbolicity** \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]

M globally hyperbolic $\iff M \simeq \mathbb{R} \times S$ (i.e. there exists global time)
Causality - a reminder

- Two points p, q are **causally related** $p \preceq q$ iff $p = q$ or \exists a future directed causal curve linking p and q.
- \preceq induces a partial order relation on the set of points of M.

- **global hyperbolicity** \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]

M globally hyperbolic $\iff M \simeq \mathbb{R} \times S$ (i.e. there exists global time)
Causality - a reminder

- Two points \(p, q \) are **causally related** \(p \preceq q \) iff
 \(p = q \) or \(\exists \) a future directed causal curve linking \(p \) and \(q \).

- \(\preceq \) induces a partial order relation on the set of points of \(M \).

- **global hyperbolicity** \(\implies \) no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]

\(M \) globally hyperbolic \(\iff M \cong \mathbb{R} \times S \) (i.e. there exists global time)
Causality - a reminder

- Two points p, q are **causally related** $p \preceq q$ iff $p = q$ or \exists a future directed causal curve linking p and q.
- \preceq induces a partial order relation on the set of points of M.

- **Global hyperbolicity** \implies no closed causal curves

Theorem [Geroch (1967)]

Compact Lorentzian manifold always contain closed causal curves.

Theorem [Geroch (1970); Bernal, Sánchez (2005)]

M globally hyperbolic $\iff M \simeq \mathbb{R} \times S$ (**i.e.** there exists global time)
Algebraisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras $\overset{1:1}{\leftrightarrow}$ (locally) compact Hausdorff topological spaces

- States $S(A) = \{\varphi\}$ on A:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(A)$ is a closed convex set
 - $P(A)$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)
 \[d(\varphi, \chi) = \sup \{ |\varphi(a) - \chi(a)| : a \in A, \|[D, a]\| \leq 1 \}. \]

- Points of $X \overset{1:1}{\leftrightarrow} P(C(X))$ \quad $\forall x \in X$ $\varphi_x : A \to \mathbb{C}$, $\varphi_x(f) := f(x)$
 - Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \overset{1:1}{\leftrightarrow}$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \simeq \mathbb{C}P^{n-1}$.
Algebratisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras \leftrightarrow (locally) compact Hausdorff topological spaces

- States $S(\mathcal{A}) = \{\varphi\}$ on \mathcal{A}:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(\mathcal{A})$ is a closed convex set
 - $P(\mathcal{A})$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)
 $$d(\varphi, \chi) = \sup\{|\varphi(a) - \chi(a)| : a \in \mathcal{A}, \|[D, a]\| \leq 1\}.$$

- Points of $X \leftrightarrow P(C(X)) \quad \forall x \in X \quad \varphi_x : \mathcal{A} \to \mathbb{C}, \quad \varphi_x(f) := f(x)$
 Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \leftrightarrow$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \simeq \mathbb{CP}^{n-1}$.
Algebraisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras \leftrightarrow (locally) compact Hausdorff topological spaces

- States $S(A) = \{\varphi\}$ on A:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(A)$ is a closed convex set
 - $P(A)$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)
 $$d(\varphi, \chi) = \sup\{|\varphi(a) - \chi(a)| : a \in A, \|[D, a]\| \leq 1\}.$$

- Points of $X \leftrightarrow P(C(X))$ $\forall x \in X$ $\varphi_x : A \to \mathbb{C}$, $\varphi_x(f) := f(x)$
 Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \leftrightarrow$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \simeq \mathbb{C}P^{n-1}$.

Michał Eckstein (Kraków)
Causal Structure for NCG
Marseille, 16th July 2014 9 / 17
Algebraisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras \longleftrightarrow (locally) compact Hausdorff topological spaces

- States $S(A) = \{\varphi\}$ on A:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(A)$ is a closed convex set
 - $P(A)$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)
 $$d(\varphi, \chi) = \sup\{|\varphi(a) - \chi(a)| : a \in A, \|[D, a]\| \leq 1\}.$$

- Points of $X \longleftrightarrow P(C(X))$ $\forall x \in X$ $\varphi_x : A \to \mathbb{C}$, $\varphi_x(f) := f(x)$
 Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \longleftrightarrow$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \cong \mathbb{C}P^{n-1}$.
Algebraisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras \longleftrightarrow (locally) compact Hausdorff topological spaces

- States $S(A) = \{\varphi\}$ on A:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(A)$ is a closed convex set
 - $P(A)$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)

$$d(\varphi, \chi) = \sup \{|\varphi(a) - \chi(a)| : a \in A, \|[D, a]\| \leq 1\}.$$

- Points of $X \longleftrightarrow P(C(X))$ $\forall x \in X$ $\varphi_x : A \rightarrow \mathbb{C}$, $\varphi_x(f) := f(x)$
 Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \longleftrightarrow$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \simeq \mathbb{C}P^{n-1}$.

Michał Eckstein (Kraków) Causal Structure for NCG Marseille, 16th July 2014 9 / 17
Algebraisation - “noncommutative points” (events)

Gelfand - Naimark theorem [1943]

commutative C^*-algebras \leftrightarrow (locally) compact Hausdorff topological spaces

- States $S(A) = \{\varphi\}$ on A:
 - positive linear functionals with $\|\varphi\| = 1$
 - $S(A)$ is a closed convex set
 - $P(A)$ - extremal points - pure states

- Connes (pseudo-)distance formula: (may be infinite)

$$d(\varphi, \chi) = \sup\{|\varphi(a) - \chi(a)| : a \in A, \|[D, a]\| \leq 1\}.$$

- Points of $X \leftrightarrow P(C(X))$ $\forall x \in X$ $\varphi_x : A \to \mathbb{C}$, $\varphi_x(f) := f(x)$
 Geodesic distance: $d_g(x, y) = d(\varphi_x, \varphi_y)$.

- Another option: Points of $X \leftrightarrow$ maximal ideals of $C(X)$.
 Noncommutatively: $M_n(\mathbb{C})$ is simple, but $P(M_n(\mathbb{C})) \simeq \mathbb{CP}^{n-1}$.
Algebraisation - the “causal cone”

Causal functions

\[C(M) = \{ f \in C^\infty(M, \mathbb{R}) : f \text{ is non-decreasing along future dir. causal curves} \} \]

Proposition [F. Besnard (2009)]

Let \(M \) be a globally hyperbolic Lorentzian manifold, then the set of smooth bounded causal functions \(C(M) \subset \widetilde{A} = C_b^\infty(M) \) completely determines the causal structure on \(M \) by

\[\forall p, q \in M, \quad p \preceq q \iff \forall f \in C(M), \quad f(p) \leq f(q). \]

A causal cone \(\mathcal{C} \) is a subset of elements in \(\widetilde{A} \) such that:

(a) \(\forall a, b \in C \quad a^* = a \), \(\forall a, b \in C \quad a + b \in C \);

(c) \(\forall a \in C \quad \forall \lambda \geq 0 \quad \lambda a \in C \), \(\forall x \in \mathbb{R} \quad x1 \in C \);

(e) \(\text{span}_C(C) = \widetilde{A} \) (the closure denotes the \(C^* \)-algebra completion);

(f) \(\forall a \in C \quad \forall \phi \in \mathcal{H} \quad \langle \phi, \mathcal{J}[D, a] \phi \rangle \leq 0. \)
Algebraisation - the “causal cone”

Causal functions

\[\mathcal{C}(M) = \{ f \in C^\infty(M, \mathbb{R}) : f \text{ - non-decreasing along future dir. causal curves} \} \]

Proposition [F. Besnard (2009)]

Let \(M \) be a globally hyperbolic Lorentzian manifold, then the set of smooth bounded causal functions \(\mathcal{C}(M) \subset \tilde{\mathcal{A}} = C_b^\infty(M) \) completely determines the causal structure on \(M \) by

\[\forall_{p, q \in M}, \quad p \preceq q \iff \forall_{f \in \mathcal{C}(M)}, \quad f(p) \leq f(q). \]

A causal cone \(\mathcal{C} \) is a subset of elements in \(\tilde{\mathcal{A}} \) such that:

1. \(\forall_{a, b \in \mathcal{C}} \quad a^* = a, \quad \forall_{a, b \in \mathcal{C}} \quad a + b \in \mathcal{C}; \)
2. \(\forall_{a \in \mathcal{C}} \forall_{\lambda \geq 0} \quad \lambda a \in \mathcal{C}, \quad \forall_{x \in \mathbb{R}} \quad x1 \in \mathcal{C}; \)
3. \(\overline{\text{span}_C(C)} = \tilde{\mathcal{A}} \) (the closure denotes the \(C^* \)-algebra completion);
4. \(\forall_{a \in \mathcal{C}} \forall_{\phi \in \mathcal{H}} \quad \langle \phi, J[D, a] \phi \rangle \leq 0. \)
Algebraisation - the “causal cone”

Causal functions

\[C(M) = \{ f \in C^\infty(M, \mathbb{R}) : f - \text{non-decreasing along future dir. causal curves} \} \]

Proposition [F. Besnard (2009)]

Let \(M \) be a globally hyperbolic Lorentzian manifold, then the set of smooth bounded causal functions \(C(M) \subset \tilde{A} = C_b^\infty(M) \) completely determines the causal structure on \(M \) by

\[\forall p, q \in M, \quad p \preceq q \iff \forall f \in C(M), \ f(p) \leq f(q). \]

A causal cone \(C \) is a subset of elements in \(\tilde{A} \) such that:

(a) \(\forall a, b \in C \quad a^* = a \), \quad \forall a, b \in C \quad a + b \in C;

(c) \(\forall a \in C \quad \forall \lambda \geq 0 \quad \lambda a \in C \), \quad \forall x \in \mathbb{R} \quad x 1 \in C;

(e) \(\overline{\text{span}_C(C)} = \tilde{A} \) (the closure denotes the \(C^* \)-algebra completion);

(f) \(\forall a \in C \quad \forall \phi \in \mathcal{H} \quad \langle \phi, \mathcal{J}[\mathcal{D}, a] \phi \rangle \leq 0. \)
Algebraisation - the “causal cone”

Causal functions

\[\mathcal{C}(M) = \{ f \in C^\infty(M, \mathbb{R}) : f \text{ - non-decreasing along future dir. causal curves} \} \]

Proposition [F. Besnard (2009)]

Let \(M \) be a globally hyperbolic Lorentzian manifold, then the set of smooth bounded causal functions \(\mathcal{C}(M) \subset \widetilde{\mathcal{A}} = C_b^\infty(M) \) completely determines the causal structure on \(M \) by

\[\forall p, q \in M, \quad p \preceq q \iff \forall f \in \mathcal{C}(M), \quad f(p) \leq f(q). \]

A causal cone \(\mathcal{C} \) is a subset of elements in \(\widetilde{\mathcal{A}} \) such that:

(a) \(\forall a, b \in \mathcal{C}, \quad a^* = a, \quad \forall a, b \in \mathcal{C}, \quad a + b \in \mathcal{C} \);

(b) \(\forall a \in \mathcal{C}, \forall \lambda \geq 0, \quad \lambda a \in \mathcal{C}, \quad \forall x \in \mathbb{R}, \quad x1 \in \mathcal{C} \);

(e) \(\text{span}_\mathcal{C}(\mathcal{C}) = \widetilde{\mathcal{A}} \) (the closure denotes the \(C^* \)-algebra completion);

(f) \(\forall a \in \mathcal{C}, \forall \phi \in \mathcal{H}, \quad \langle \phi, \mathcal{J}[D, a] \phi \rangle \leq 0. \)
Algebraisation - the “causal cone”

Causal functions

\[C(M) = \{ f \in C^\infty(M, \mathbb{R}) : f \text{ is non-decreasing along future dir. causal curves} \} \]

Proposition [F. Besnard (2009)]

Let \(M \) be a globally hyperbolic Lorentzian manifold, then the set of smooth bounded causal functions \(C(M) \subseteq \tilde{\mathcal{A}} = C^\infty_b(M) \) completely determines the causal structure on \(M \) by

\[\forall p, q \in M, \quad p \preceq q \iff \forall f \in C(M), \quad f(p) \leq f(q). \]

A causal cone \(\mathcal{C} \) is a subset of elements in \(\tilde{\mathcal{A}} \) such that:

(a) \(\forall a, b \in \mathcal{C}, \quad a^* = a \)

(b) \(\forall a, b \in \mathcal{C}, \quad a + b \in \mathcal{C} \)

(c) \(\forall a \in \mathcal{C}, \forall \lambda \geq 0, \quad \lambda a \in \mathcal{C}, \quad \forall x \in \mathbb{R}, \quad x1 \in \mathcal{C} \)

(d) \(\text{span}_{\mathcal{C}}(\mathcal{C}) = \tilde{\mathcal{A}} \) (the closure denotes the \({C^*} \)-algebra completion)

(e) \(\forall a \in \mathcal{C}, \forall \phi \in \mathcal{H}, \quad \langle \phi, \mathcal{J}[D, a]\phi \rangle \leq 0 \)
Proposition [N. Franco, M.E. (2013)]

Let \mathcal{C} be a causal cone, then for every two states $\chi, \xi \in S(\tilde{\mathcal{A}})$ define

$$\chi \preceq \xi \iff \forall a \in \mathcal{C} \quad \chi(a) \leq \xi(a).$$

The relation \preceq defines a partial order relation on $S(\tilde{\mathcal{A}})$.

Theorem [N. Franco, M.E. (2013)]

Let $(\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ be a commutative Lorentzian spectral triple constructed from a globally hyperbolic Lorentzian manifold M. Then,

$$P(\mathcal{A}) \simeq \text{Spec}(\mathcal{A}) \cong M,$$

and the partial order relation \preceq on $S(\tilde{\mathcal{A}})$ restricted to $P(\mathcal{A})$ corresponds to the usual causal relation on M.
Proposition [N. Franco, M.E. (2013)]

Let \mathcal{C} be a causal cone, then for every two states $\chi, \xi \in S(\tilde{\mathcal{A}})$ define

$$\chi \preceq \xi \text{ iff } \forall a \in \mathcal{C} \quad \chi(a) \leq \xi(a).$$

The relation \preceq defines a partial order relation on $S(\tilde{\mathcal{A}})$.

Theorem [N. Franco, M.E. (2013)]

Let $(\mathcal{A}, \tilde{\mathcal{A}}, \mathcal{H}, \mathcal{D}, \mathcal{J})$ be a commutative Lorentzian spectral triple constructed from a globally hyperbolic Lorentzian manifold M. Then,

$$P(\mathcal{A}) \simeq \text{Spec}(\mathcal{A}) \cong M,$$

and the partial order relation \preceq on $S(\tilde{\mathcal{A}})$ restricted to $P(\mathcal{A})$ corresponds to the usual causal relation on M.
1. Introduction & motivation

2. Noncommutative geometry
 - Spectral triples - a reminder
 - Lorentzian spectral triples
 - Commutative examples

3. Causal structures
 - Causality - rudiments
 - Algebraisation

4. Testing the concepts – almost commutative causality
 - The “two-sheeted” space-time
 - The $M_2(\mathbb{C})$ model

5. Summary
Almost commutative flat space-time

Theorem [N. Franco, M.E. (2014a)]

Let $(\mathcal{A}_M, \tilde{\mathcal{A}}_M, \mathcal{H}_M, \mathcal{D}_M, \mathcal{J}_M)$ be an even Lorentzian spectral triple with \mathbb{Z}_2-grading γ_M and a finite Riemannian spectral triple $(\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F)$. Then

$$\mathcal{A} = \mathcal{A}_M \otimes \mathcal{A}_F, \quad \tilde{\mathcal{A}} = \tilde{\mathcal{A}}_M \otimes \mathcal{A}_F, \quad \mathcal{H} = \mathcal{H}_M \otimes \mathcal{H}_F, \quad \mathcal{D} = \mathcal{D}_M \otimes 1 + \gamma_M \otimes \mathcal{D}_F,$$

is a Lorentzian spectral triple.

- A commutative spectral triple for Minkowski space-time
 - $\mathcal{A}_M = \mathcal{S}(\mathbb{R}^{1,n})$ - rapidly decreasing functions,
 - $\tilde{\mathcal{A}}_M = \text{span}_\mathbb{C}(\mathcal{C}(M)) \subset \mathcal{C}_b(\mathbb{R}^{1,n})$,
 - $\mathcal{H}_M = L^2(\mathbb{R}^{1,n}, \mathbb{C}^{2(n+1)/2})$,
 - $\mathcal{D}_M = -i\gamma^\mu \partial_\mu$,
 - $\tilde{\mathcal{J}}_M = i\gamma^0$.

Theorem [Kadison (1986)]

If at least one of the C^*-algebras A_1, A_2 is commutative, then $P(A_1 \otimes A_2) \cong P(A_1) \times P(A_2)$, i.e. pure states on $A_1 \otimes A_2$ are separable.
Almost commutative flat space-time

Theorem [N. Franco, M.E. (2014a)]

Let \((A_M, \tilde{A}_M, \mathcal{H}_M, D_M, J_M)\) be an even Lorentzian spectral triple with \(\mathbb{Z}_2\)-grading \(\gamma_M\) and a finite Riemannian spectral triple \((A_F, \mathcal{H}_F, D_F)\). Then

\[
A = A_M \otimes A_F, \quad \tilde{A} = \tilde{A}_M \otimes A_F, \quad \mathcal{H} = \mathcal{H}_M \otimes \mathcal{H}_F, \quad D = D_M \otimes 1 + \gamma_M \otimes D_F,
\]

is a Lorentzian spectral triple.

- A commutative spectral triple for Minkowski space-time
 - \(A_M = \mathcal{S}(\mathbb{R}^{1,n})\) - rapidly decreasing functions,
 - \(\tilde{A}_M = \text{span}_\mathbb{C}(\mathcal{C}(M)) \subset \mathcal{C}_b(\mathbb{R}^{1,n})\),
 - \(\mathcal{H}_M = L^2(\mathbb{R}^{1,n}, \mathbb{C}^{2(n+1)/2})\),
 - \(D_M = -i\gamma^\mu \partial_\mu\),
 - \(J_M = i\gamma^0\).

Theorem [Kadison (1986)]

If at least one of the \(C^*\)-algebras \(A_1, A_2\) is commutative, then \(P(A_1 \otimes A_2) \cong P(A_1) \times P(A_2)\), i.e. pure states on \(A_1 \otimes A_2\) are separable.
Almost commutative flat space-time

Theorem [N. Franco, M.E. (2014a)]

Let \((\mathcal{A}_M, \tilde{\mathcal{A}}_M, \mathcal{H}_M, \mathcal{D}_M, \mathcal{J}_M)\) be an even Lorentzian spectral triple with \(\mathbb{Z}_2\)-grading \(\gamma_M\) and a finite Riemannian spectral triple \((\mathcal{A}_F, \mathcal{H}_F, \mathcal{D}_F)\). Then

\[
\begin{align*}
\mathcal{A} &= \mathcal{A}_M \otimes \mathcal{A}_F, \\
\tilde{\mathcal{A}} &= \tilde{\mathcal{A}}_M \otimes \mathcal{A}_F, \\
\mathcal{H} &= \mathcal{H}_M \otimes \mathcal{H}_F, \\
\mathcal{D} &= \mathcal{D}_M \otimes 1 + \gamma_M \otimes \mathcal{D}_F,
\end{align*}
\]

is a Lorentzian spectral triple.

- A commutative spectral triple for Minkowski space-time
 - \(\mathcal{A}_M = S(\mathbb{R}^{1,n})\) - rapidly decreasing functions,
 - \(\tilde{\mathcal{A}}_M = \text{span}_\mathbb{C}(\mathcal{C}(M)) \subset \mathcal{C}_b(\mathbb{R}^{1,n})\),
 - \(\mathcal{H}_M = L^2(\mathbb{R}^{1,n}, \mathcal{C}^{2(n+1)/2})\),
 - \(\mathcal{D}_M = -i\gamma^\mu \partial_\mu\),
 - \(\mathcal{J}_M = i\gamma^0\).

Theorem [Kadison (1986)]

If at least one of the \(C^*\)-algebras \(\mathcal{A}_1, \mathcal{A}_2\) is commutative, then

\[P(\mathcal{A}_1 \otimes \mathcal{A}_2) \cong P(\mathcal{A}_1) \times P(\mathcal{A}_2),\]

i.e. pure states on \(\mathcal{A}_1 \otimes \mathcal{A}_2\) are separable.
Almost commutative flat space-time

Theorem [N. Franco, M.E. (2014a)]

Let \((A_M, \tilde{A}_M, \mathcal{H}_M, D_M, J_M)\) be an even Lorentzian spectral triple with \(\mathbb{Z}_2\)-grading \(\gamma_M\) and a finite Riemannian spectral triple \((A_F, \mathcal{H}_F, D_F)\). Then

\[
A = A_M \otimes A_F, \quad \tilde{A} = \tilde{A}_M \otimes A_F, \quad \mathcal{H} = \mathcal{H}_M \otimes \mathcal{H}_F, \quad D = D_M \otimes 1 + \gamma_M \otimes D_F,
\]

is a Lorentzian spectral triple.

- A commutative spectral triple for Minkowski space-time
 - \(A_M = S(\mathbb{R}^{1,n})\) - rapidly decreasing functions,
 - \(\tilde{A}_M = \text{span}_\mathbb{C}(\mathcal{C}(M)) \subset \mathcal{C}_b(\mathbb{R}^{1,n})\),
 - \(\mathcal{H}_M = L^2(\mathbb{R}^{1,n}, C^{2(n+1)/2})\),
 - \(D_M = -i\gamma^\mu \partial_\mu\),
 - \(J_M = i\gamma^0\).

Theorem [Kadison (1986)]

If at least one of the \(C^*\)-algebras \(A_1, A_2\) is commutative, then

\[P(A_1 \otimes A_2) \cong P(A_1) \times P(A_2),\]

i.e. pure states on \(A_1 \otimes A_2\) are separable.
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[A_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \begin{pmatrix} 0 & m \\ \bar{m} & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*. \]
- $P(A_F) \cong \mathbb{Z}^2$, hence $\mathcal{M}(A_M \otimes A_F) \cong \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}^{1,1}$,
2. $l(\gamma) \geq \frac{\pi}{2|m|}$.

There is causal link between the sheets!
The "two-sheeted" space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[\mathcal{A}_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \begin{pmatrix} 0 & m \\ -m & 0 \end{pmatrix}, \quad \text{with } m \in \mathbb{C}^*. \]
- $P(\mathcal{A}_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

- $p \preceq q$ on $\mathbb{R}^{1,1}$,
- $l(\gamma) \geq \frac{\pi}{2|m|}$.

Michał Eckstein (Kraków)
Causal Structure for NCG
Marseille, 16th July 2014
14 / 17
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[A_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*. \]
- $P(A_F) \cong \mathbb{Z}^2$, hence $\mathcal{M}(A_M \otimes A_F) \cong \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}_{(1)}^{1,1}$ and $q' \in \mathbb{R}_{(2)}^{1,1}$ then $p \preceq q'$ if and only if
- $p \preceq q$ on $\mathbb{R}^{1,1}$,
- $l(\gamma) \geq \frac{\pi}{2|m|}$.

There is causal link between the sheets!
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:

$$A_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \begin{pmatrix} 0 & m \\ \frac{1}{m} & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*.$$

- $P(A_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(A_M \otimes A_F) \simeq \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}^{1,1}$,
2. $l(\gamma) \geq \frac{\pi}{2|m|}$.
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[A_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \begin{pmatrix} 0 & m \\ -m & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*. \]
- $P(A_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(\mathcal{A}_M \otimes A_F) \simeq \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}^{1,1}$,
2. $l(\gamma) \geq \frac{\pi}{2|m|}$.

\[\gamma = \frac{n}{2|m|}, \quad l(\gamma) = \frac{1}{|m|} \]
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:

 $\mathcal{A}_F = \mathbb{C} \oplus \mathbb{C}$, \quad $\mathcal{H}_F = \mathbb{C}^2$, \quad $\mathcal{D}_F = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix}$, with $m \in \mathbb{C}^*$.

 $P(\mathcal{A}_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}_{1,1} \cup \mathbb{R}_{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}_{1,1}^{(1)}$ and $q' \in \mathbb{R}_{1,1}^{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}_{1,1}$,
2. $l(\gamma) \geq \frac{\pi}{2|m|}$.
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[A_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*. \]
- $P(A_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(A_M \otimes A_F) \simeq \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}^{1,1}$, **No classical causality violation!**
2. $l(\gamma) \geq \frac{\pi}{2|m|}$.
The “two-sheeted” space-time

- We work on 2-dim Minkowski spacetime M.
- Consider a finite spectral triple:
 \[\mathcal{A}_F = \mathbb{C} \oplus \mathbb{C}, \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix}, \text{ with } m \in \mathbb{C}^*. \]
- $P(\mathcal{A}_F) \simeq \mathbb{Z}^2$, hence $\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \cup \mathbb{R}^{1,1}$.

Theorem [N. Franco, M.E. (2014c)]

Let $p \in \mathbb{R}^{1,1}_{(1)}$ and $q' \in \mathbb{R}^{1,1}_{(2)}$ then $p \preceq q'$ if and only if

1. $p \preceq q$ on $\mathbb{R}^{1,1}$, No classical causality violation!
2. $l(\gamma) \geq \frac{\pi}{2|m|}$. There is causal link between the sheets!
The $M_2(\mathbb{C})$ model

- The finite spectral triple:
 \[\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- $P(\mathcal{A}_F) \simeq \mathbb{C}P^1$, hence
 \[\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2. \]
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

\[A_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- $P(A_F) \simeq \mathbb{C}P^1$, hence

\[\mathcal{M}(\mathcal{A}_M \otimes A_F) \simeq \mathbb{R}^{1,1} \times S^2. \]
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

$$\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*.$$

- $P(A_F) \simeq \mathbb{C}P^1$, hence

$$\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2.$$

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$;

- ξ and φ have the same latitude;

- $l(\gamma) \geq \frac{|\theta_\varphi - \theta_\xi|}{|d_1 - d_2|}$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$.
The $M_2(\mathbb{C})$ model

- The finite spectral triple:
 \[\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- $P(\mathcal{A}_F) \simeq \mathbb{C}P^1$, hence $\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2$.

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$;
- ξ and φ have the same latitude;
- $l(\gamma) \geq \frac{|\theta_{\varphi} - \theta_{\xi}|}{|d_1 - d_2|}$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$.
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

\[\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- \(P(\mathcal{A}_F) \simeq \mathbb{C}P^1 \), hence

\[\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2. \]

Theorem [N. Franco, M.E. (2013)]

Two pure states \(\omega_{p,\xi}, \omega_{q,\varphi} \) are causally related with \(\omega_{p,\xi} \preceq \omega_{q,\varphi} \) if and only if:

- \(p \preceq q \) in \(\mathbb{R}^{1,1} \);

- \(\xi \) and \(\varphi \) have the same latitude;

- \(l(\gamma) \geq \frac{|\theta_{\varphi} - \theta_{\xi}|}{|d_1 - d_2|} \), where \(l(\gamma) \) represents the length of a causal curve \(\gamma \) going from \(p \) to \(q \) on \(\mathbb{R}^{1,1} \).
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

\[A_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- $P(A_F) \simeq \mathbb{C}P^1$, hence

\[\mathcal{M}(A_M \otimes A_F) \simeq \mathbb{R}^{1,1} \times S^2. \]

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$;
- ξ and φ have the same latitude;
- $l(\gamma) \geq \left| \frac{\theta_\varphi - \theta_\xi}{d_1 - d_2} \right|$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$.
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

\[\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*. \]

- $P(\mathcal{A}_F) \simeq \mathbb{CP}^1$, hence

\[\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2. \]

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$; No classical causality violation!
- ξ and φ have the same latitude;
- $l(\gamma) \geq \left| \frac{\theta_{q} - \theta_{\xi}}{d_1 - d_2} \right|$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$.
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

$$\mathcal{A}_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad \mathcal{D}_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*.$$

- $P(\mathcal{A}_F) \simeq \mathbb{C}P^1$, hence $\mathcal{M}(\mathcal{A}_M \otimes \mathcal{A}_F) \simeq \mathbb{R}^{1,1} \times S^2$.

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$; No classical causality violation!
- ξ and φ have the same latitude; Agrees with Connes’ distance!
- $l(\gamma) \geq \frac{|\theta_\varphi - \theta_\xi|}{|d_1 - d_2|}$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$.
The $M_2(\mathbb{C})$ model

- The finite spectral triple:

$$A_F = M_2(\mathbb{C}), \quad \mathcal{H}_F = \mathbb{C}^2, \quad D_F = \text{diag}\{d_1, d_2\}, \text{ with } d_1 \neq d_2 \in \mathbb{R}^*.$$

- $P(A_F) \simeq \mathbb{C}P^1$, hence $\mathcal{M}(A_M \otimes A_F) \simeq \mathbb{R}^{1,1} \times S^2$.

Theorem [N. Franco, M.E. (2013)]

Two pure states $\omega_{p,\xi}, \omega_{q,\varphi}$ are causally related with $\omega_{p,\xi} \preceq \omega_{q,\varphi}$ if and only if:

- $p \preceq q$ in $\mathbb{R}^{1,1}$; No classical causality violation!
- ξ and φ have the same latitude; Agrees with Connes’ distance!
- $l(\gamma) \geq \frac{|\theta_{\varphi} - \theta_{\xi}|}{|d_1 - d_2|}$, where $l(\gamma)$ represents the length of a causal curve γ going from p to q on $\mathbb{R}^{1,1}$. “Finite speed of light”
Outline

1. Introduction & motivation
2. Noncommutative geometry
3. Causal structures
4. Testing the concepts – almost commutative causality
5. Summary
Summary and outlook

- Algebraisation of Lorentzian structures is possible!
- Surprising causal structure of almost commutative geometries.
- Generalisation to higher dim, curved, more noncommutative, ... – Volunteers welcome!

- Is there any true physics behind the toy models?

Thank you for your attention!

Summary and outlook

- Algebraisation of Lorentzian structures is possible!
- Surprising causal structure of almost commutative geometries.

- Generalisation to higher dim, curved, more noncommutative, ... – Volunteers welcome!

- Is there any true physics behind the toy models?

Thank you for your attention!

Summary and outlook

- Algebraisation of Lorentzian structures is possible!
- Surprising causal structure of almost commutative geometries.
- Generalisation to higher dim, curved, more noncommutative, ... – Volunteers welcome!
- Is there any true physics behind the toy models?

Thank you for your attention!

Algebraisation of Lorentzian structures is possible!

Surprising causal structure of almost commutative geometries.

Generalisation to higher dim, curved, more noncommutative, . . . – Volunteers welcome!

Is there any true physics behind the toy models?

Thank you for your attention!

Summary and outlook

- Algebraisation of Lorentzian structures is possible!
- Surprising causal structure of almost commutative geometries.
- Generalisation to higher dim, curved, more noncommutative, . . . – Volunteers welcome!
- Is there any true physics behind the toy models?

Thank you for your attention!