Recent experimental results and theoretical developments in heavy ion physics

Frontiers of fundamental physics 14
Marseille, July 18, 2014

Jean-Paul Blaizot, IPht-Saclay
Why colliding heavy nuclei at high energy?
Why colliding heavy nuclei at high energy?

Fundamental issues
Why colliding heavy nuclei at high energy?

Fundamental issues

- Extreme states of matter. Of intrinsic interest (QCD phase diagram, deconfinement, chiral symmetry restoration, etc), and of relevance for astrophysics (early universe, compact stars)
Why colliding heavy nuclei at high energy?

Fundamental issues

- Extreme states of matter. Of intrinsic interest (QCD phase diagram, deconfinement, chiral symmetry restoration, etc), and of relevance for astrophysics (early universe, compact stars)

- ‘Universal’ character of wave functions of large nuclei at high energy (dense gluonic systems, saturation, color glass condensate)
Why colliding heavy nuclei at high energy?

Fundamental issues

- Extreme states of matter. Of intrinsic interest (QCD phase diagram, deconfinement, chiral symmetry restoration, etc), and of relevance for astrophysics (early universe, compact stars)

- ‘Universal’ character of wave functions of large nuclei at high energy (dense gluonic systems, saturation, color glass condensate)

Simplicity often emerges in asymptotic situations
Why colliding heavy nuclei at high energy?

Fundamental issues

- Extreme states of matter. Of intrinsic interest (QCD phase diagram, deconfinement, chiral symmetry restoration, etc), and of relevance for astrophysics (early universe, compact stars)

- ‘Universal’ character of wave functions of large nuclei at high energy (dense gluonic systems, saturation, color glass condensate)

Simplicity often emerges in asymptotic situations

Many phenomenological issues (heavy ions are complex systems !)
The QCD phase diagram

High T, n
Matter is ‘simple’
(QCD A.F.)
The crossover from the hadron gas to the quark-gluon plasma from lattice calculations

(Borsanyi et al, arXiv:1309.5258)
Colliding heavy nuclei
From AGS to SPS to RHIC to LHC
Pb+Pb @ sqrt(s) = 2.76 ATeV
2010-11-08 11:36:37
Fill : 1482
Run : 137124
Event : 0x00000009D4C1693
\[\eta \Delta -4 -2 0 2 4 \]
\[\phi \Delta 0 2 \]
\[d \eta \Delta d \]
\[\text{pair} N 2 \]
\[d \text{trig} N 1 \]

\[\text{CMS} = 2.76 \text{ TeV, 0-5\% centrality} \]

0-1\%, Pb-Pb
\[2 < p_T < 3 \text{ GeV} \]
\[2<|\Delta \eta|<5 \]

\[\int L \cdot dt = 3.1 \mu b^{-1} \]

PbPb \[\sqrt{s} = 2.76 \text{ TeV, 0-5\% centrality} \]
Pb+Pb @ sqrt(s) = 2.76 ATeV
2010-11-08 11:36:37
Fill : 1482
Run : 137124
Event : 0x90000009D4C1693

(a) CMS
\[L_{\text{int}} = 3.1 \mu b^{-1} \]
0-1%, Pb-Pb
2 < \(p_T \) < 3 GeV
2 < |\(\Delta \eta \)| < 5

\[\nu_{23} (EP n=2-6) + \nu_{32} \]
Even harmonics (EP n=2,4,6)
Odd harmonics (EP n=3,5)
\[\Delta \phi \]

CMS Preliminary
\[L_{\text{int}} = 140 \mu b^{-1} \]
2010, 0-30%, Leading jet
2011, 0-10%, Inclusive jet
2011, 10-30%, Inclusive jet

Jet \(p_T > 100 GeV/c \)
\[\xi = \ln(1/z) \]

Preliminary
CMS Pb-Pb \[\sqrt{s} = 2.76 TeV \]
Cent. 0-100%, |\(y \)| < 2.4
\[L_{\text{int}} = 150 \mu b^{-1} \]
\[p_T > 4 GeV/c \]

Events / (0.1 GeV/c²)
\[m_{\mu \mu} (GeV/c^2) \]
Little Bang(s)
Little Bang(s)
Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.
Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.
Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small x’ partons. One characteristic scale: saturation momentum Q_s. Large initial fluctuations.
Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small x’ partons. One characteristic scale: saturation momentum Q_s. Large initial fluctuations.
Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small x’ partons. One characteristic scale: saturation momentum Qs. Large initial fluctuations.

Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small x’ partons. One characteristic scale: saturation momentum Qs. Large initial fluctuations.

Little Bang(s)

Initial conditions. Large Lorentz contraction. Nucleus wave function is mostly gluons.

Particle (entropy) production. Involves mostly ‘small x’ partons. One characteristic scale: saturation momentum Qs. Large initial fluctuations.

Hadronization in apparent chemical equilibrium. Hadronic cascade till freeze-out. Measurements.
Moving backward in time

Conditions are reached for the formation of a quark-gluon plasma

Matter at freeze-out is in chemical equilibrium
Counting particles

Compatible with theoretical expectations, but large (theoretical) uncertainties remain...
The conditions for the formation of a quark-gluon plasma are reached in the early stages of the collisions.

Order of magnitude estimate

\[
\frac{dN_{ch}}{d\eta} \approx 1600
\]

\[
\epsilon \tau_0 \approx 15 \text{GeV/fm}^2
\]

\[
T_0 \approx 300 \text{ MeV}
\]
Matter at freeze-out

well described by a statistical picture

\[n \sim \frac{1}{e^{(\varepsilon_k - \mu)/T} \pm 1} \]
Matter at freeze-out

well described by a statistical picture

\[n \sim \frac{1}{e^{(\varepsilon_k - \mu)/T} \pm 1} \]

(from J. Cleymans et al, hep-ph/0511094)
Moving backward in time

Matter flows like a fluid

The quark-gluon plasma as a nearly perfect fluid

Strong coupling, viscosity puzzle
Collective flow

Matter flows like a fluid and is well described by relativistic hydrodynamics

$$\partial_\mu T^{\mu\nu} = 0 \quad \partial_\mu j^\mu = 0$$
Collective flow

Matter flows like a fluid and is well described by relativistic hydrodynamics

\[\partial_\mu T^{\mu\nu} = 0 \quad \partial_\mu j^\mu = 0 \]

Flow is best seen in azimuthal distributions of produced particles.
Collective flow

Matter flows like a fluid and is well described by relativistic hydrodynamics

\[\partial_\mu T^{\mu\nu} = 0 \quad \partial_\mu j^\mu = 0 \]

Flow is best seen in azimuthal distributions of produced particles.
The flow is sensitive to initial density fluctuations

\[v_n \sim \epsilon_n \]
The flow is sensitive to initial density fluctuations

\[v_n \sim \epsilon_n \]
The flow is sensitive to initial density fluctuations

\[v_n \sim \epsilon_n \]
The flow is sensitive to initial density fluctuations

\[v_n \sim \epsilon_n \]
The flow is sensitive to initial density fluctuations

\[v_n \sim \varepsilon_n \]
The perfect liquid

The data suggest a small value of the ratio \(\eta/s \), with \(\eta \) the viscosity and \(s \) the entropy density.

\[
\eta = \frac{1}{3} np\lambda \quad \lambda = \frac{1}{n\sigma}
\]

The small value of \(\eta/s \) suggests a strongly coupled liquid...
Surprising \(p\text{-}Pb \) collisions

Is it hydrodynamics?

Or evidence for CGC?

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan: 1009.5295

Dusling, Venugopalan: 1211.3701
HYDRODYNAMICS

$$\partial_\mu T^{\mu \nu} = 0 \quad \partial_\mu j^\mu = 0$$
HYDRODYNAMICS

\[\partial_\mu T^{\mu \nu} = 0 \quad \partial_\mu j^\mu = 0 \]

• **Viscous hydro** is under control and works well. A rich flow pattern, sensitive to initial fluctuations of energy density is measured, and well reproduced by hydro.
HYDRODYNAMICS

\[\partial_\mu T^{\mu\nu} = 0 \quad \partial_\mu j^\mu = 0 \]

- **Viscous hydro** is under control and works well. A rich flow pattern, sensitive to initial fluctuations of energy density is measured, and well reproduced by hydro.

- small ratio of viscosity to entropy density, and early thermalization, suggest **strong coupling**

- **naturally explained by AdS/CFT.** Led to a considerable boost in the development of strong coupling techniques, with impact in particular on relativistic viscous hydrodynamics.

- **Viscosity puzzle:** the QCD coupling is not (cannot be) infinite!

- **Small system puzzle:** can hydro be applied to small systems, such as pA and pp ?.....
Moving backward in time

Nuclei are made of densely packed gluons

The problem of thermalization
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)

In a collision at high energy, one ‘sees’ mostly the gluons in the nuclei
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation).

In a collision at high energy, one ‘sees’ mostly the gluons in the nuclei.
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)

In a collision at high energy, one ‘sees’ mostly the gluons in the nuclei.

Gluon density increases with energy (with decreasing x, increasing Q)
Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)

In a collision at high energy, one 'sees' mostly the gluons in the nuclei

Gluon density increases with energy (with decreasing x, increasing Q)

Bulk of particle production ($p_T \lesssim 2$ GeV)

- RHIC ($\sqrt{s} = 200$ GeV) $x \sim 10^{-2}$
- LHC ($\sqrt{s} = 5.5$ TeV) $x \sim 4 \times 10^{-4}$
Evolution equations describe the evolution with energy of relevant configurations (DGLAP, BFKL, JIMWLK...).

Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation).

In a collision at high energy, one ‘sees’ mostly the gluons in the nuclei.

Gluon density increases with energy (with decreasing x, increasing Q).

Bulk of particle production ($p_T \lesssim 2$ GeV)
- RHIC ($\sqrt{s} = 200$ GeV) \quad x \sim 10^{-2}$
- LHC ($\sqrt{s} = 5.5$ TeV) \quad x \sim 4 \times 10^{-4}$

Evolution equations describe the evolution with energy of relevant configurations (DGLAP, BFKL, JIMWLK...).
Evolution equations describe the evolution with energy of relevant configurations (DGLAP, BFKL, JIMWLK...)

Fluctuations into multi-gluon configurations look frozen during collision (Lorentz time dilation)

In a collision at high energy, one ‘sees’ mostly the gluons in the nuclei

Gluon density increases with energy (with decreasing x, increasing Q)

Bulk of particle production ($p_T \lesssim 2$ GeV)

- RHIC ($\sqrt{s} = 200$ GeV) $x \sim 10^{-2}$
- LHC ($\sqrt{s} = 5.5$ TeV) $x \sim 4 \times 10^{-4}$

Evolution equations describe the evolution with energy of relevant configurations (DGLAP, BFKL, JIMWLK...)

The growth eventually saturates
Saturation momentum

At saturation, occupation numbers are large

\[
xG(x, Q^2) \frac{\pi R^2 Q_s^2}{\alpha_s} \sim 1
\]

\[
Q_s^2(x, A) \approx Q_0^2 A^{1/3} \left(\frac{x_0}{x} \right)^\lambda
\]

\[
\lambda = 0.2 \div 0.3
\]
Saturation momentum

$$Q_s^2 \approx \alpha_s \frac{xG(x, Q^2)}{\pi R^2}$$

At saturation, occupation numbers are large

$$\frac{xG(x, Q^2)}{\pi R^2 Q_s^2} \sim \frac{1}{\alpha_s}$$

Most partons taking part in collision have

$$k_T \sim Q_s$$

$$Q_s^2(x, A) \sim Q_0^2 A^{1/3} \left(\frac{x_0}{x} \right)^\lambda$$

$$\lambda = 0.2 \div 0.3$$
Saturation momentum

\[Q_s^2 \approx \alpha_s \frac{xG(x, Q^2)}{\pi R^2} \]

At saturation, occupation numbers are large

\[\frac{xG(x, Q^2)}{\pi R^2 Q_s^2} \sim \frac{1}{\alpha_s} \]

Most partons taking part in collision have

\[k_T \sim Q_s \]

\[f_A(k_{\perp} \ll Q_s) \approx \frac{1}{\alpha N_c} \ln \frac{Q_s^2}{k_{\perp}^2} \]

\[Q_s^2(x, A) \approx Q_0^2 A^{1/3} \left(\frac{x_0}{x} \right)^\lambda \]

\[\lambda = 0.2 \div 0.3 \]

\[f_A(k_{\perp} \gg Q_s) \approx \frac{1}{\alpha N_c} \frac{Q_s^2}{k_{\perp}^2} \]
THERMALIZATION

• How do we go from the initial nuclear wave-functions to the locally equilibrated fluid seen in experiments?
• What are the initial d.o.f.'s: partons? color fields (CGC)? mixture of both?
• Initial fields are typically unstable (e.g. if anisotropic momentum distributions of particles). Instabilities provide 'fast' isotropization of momentum distributions
• Amplification of soft modes is a generic feature
• CGC picture suggests an overpopulation of soft
Moving backward in time

Signals from the early stages

Hard probes
Hard probes
Hard probes

Hard probes are produced on short space time scales, and their production rate can be calculated from pQCD.
Hard probes

Hard probes are produced on short space time scales, and their production rate can be calculated from pQCD.

Hard probes are like test particles. The study of their propagation may provide information about the medium in which they propagate.
Hard probes are produced on short space time scales, and their production rate can be calculated from pQCD.

Hard probes are like test particles. The study of their propagation may provide information about the medium in which they propagate.

Examples of hard probes: heavy quarks, quarkonia, photons, Z and W, jets...
Hard probes are produced on short space time scales, and their production rate can be calculated from pQCD.

Hard probes are like test particles. The study of their propagation may provide information about the medium in which they propagate.

Examples of hard probes: heavy quarks, quarkonia, photons, Z and W, jets...

Prospects for hard probes at the LHC are truly fascinating.
hard processes are under control

Hard processes are not affected by the nuclear environment, as expected.
J/Ψ suppression
J/Ψ suppression

A long story....
J/Ψ suppression

A long story....

SPS

'anomalous' suppression
J/Ψ suppression

A long story....

SPS

‘anomalous’ suppression

RHIC
J/Ψ suppression

A long story....

SPS

‘anomalous’ suppression

RHIC

suppression / regeneration

LHC
Y suppression

Excited states are more 'fragile'....

Findings in line with theoretical expectations....
Di-jet asymmetry
there is more to it than just ‘quenching’...

Missing energy is associated with additional radiation
of many soft quanta at large angles

This reflects a genuine feature
of the in-medium QCD cascade.

Tracing back the lost energy...

- Detailed \((\Delta R, p_T)\) distributions
 - Summing charged particles for unbalanced \(A_j > 0.22\) dijets in central \(0-30\%\) collisions...
 - 35 GeV missing at \(\Delta R < 0.2\), large \(p_T\) particles
 - Balanced by low \(p_T\) particle up to very large \(\Delta R\)
The angular structure is a generic property of the in-medium QCD cascade

Conclusions

What have we learned at the LHC?
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity)
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity).

We have began to study the properties of this quark-gluon plasma.
Conclusions

What have we learned at the LHC?

A quark–gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity).

We have began to study the properties of this quark–gluon plasma.

Modelling of collisions is greatly helped by the success of hydrodynamics.
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity).

We have began to study the properties of this quark-gluon plasma.

Modelling of collisions is greatly helped by the success of hydrodynamics.

Early stages of the collisions may be amenable to first principle calculations.
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity).

We have began to study the properties of this quark-gluon plasma.

- Modelling of collisions is greatly helped by the success of hydrodynamics.
- Early stages of the collisions may be amenable to first principle calculations.
- The LHC is offering new, precise (hard) probes to diagnose the QGP.
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity).

We have began to study the properties of this quark-gluon plasma.

Modelling of collisions is greatly helped by the success of hydrodynamics.

Early stages of the collisions may be amenable to first principle calculations.

The LHC is offering new, precise (hard) probes to diagnose the QGP.

Much, much more remains to be learned!
Conclusions

What have we learned at the LHC?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions, whose global properties do not seem to change much between RHIC and LHC (a liquid with low relative viscosity)

We have began to study the properties of this quark-gluon plasma

Modelling of collisions is greatly helped by the success of hydrodynamics
Early stages of the collisions may be amenable to first principle calculations
The LHC is offering new, precise (hard) probes to diagnose the QGP

Much, much more remains to be learned!

The field has never been so exciting as now!