Background-independent renormalization in quantum gravity models

Benjamin Bahr
II. Insitute for Theoretical Physics
University of Hamburg
Luruper Chaussee 149
22761 Hamburg

Marseille,
Symposium of Frontiers in Fundamental Physics
17th of July 2014
• Motivation: Why renormalization in spin foam models?
• Renormalization without a length scale
• Diffeomorphism symmetry
• Easy examples
• How to do it in practice: Approximation methods
• Summary
EPRL Spin Foam model

\[Z_{\text{EPRL}} = \sum_{k_f, l_e} \prod_{e} A_{e} \prod_{f} A_{f} \prod_{v} A_{v} \left(\prod_{e, \partial} B_{e} \prod_{v, \partial} B_{v} \right) \]

boundary terms

Triangulation (originally embedded, nowadays mostly abstract)

Geometrical interpretation of boundary states as discrete (twisted) geometry

Physical input: implementation of simplicity constraints

\[B = \frac{1}{\gamma} (e \wedge e) + \frac{1}{\gamma} e \wedge e \]

onto state-sum model for 4d BF theory

[Reisenberger '94, Barrett, Crane '99, Livine, Speziale '07, Engle, Pereira, Rovelli, Livine '07, Freidel, Krasnov '07, Kamiński, Kisielowski, Lewandowski '09, Han, Thiemann '10, Oriti Baratin '11, ...]

[Plebański '77, Capovilla, Jacobson, Dell, Mason '91]

[Ponzano, Regge, '69, Horowitz '89, Baez '99]
Renormalization á la Wilson

General feature of physical systems:

\[\infty \text{ many d.o.f. } + \text{ nonlinearity } = \text{ „running of coupling constants“} \]

d.o.f. ordered along scales – dynamics is different at different scales

[crf Wilson '71]
Classical General Relativity

Gravity \leftrightarrow Curvature of space-time metric $g_{\mu\nu}$

$$S_{EH}[g_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \ R$$

Diffeomorphisms: $\phi : \mathcal{M} \rightarrow \mathcal{M}$

$$g_{\mu\nu}(x) \rightarrow \frac{\partial \phi'\mu}{\partial x\mu} \frac{\partial \phi'\nu}{\partial x\nu} g_{\mu'\nu'}(\phi(x))$$

$$T_{\mu\nu}(x) \rightarrow \frac{\partial \phi'\mu}{\partial x\mu} \frac{\partial \phi'\nu}{\partial x\nu} T_{\mu'\nu'}(\phi(x))$$

Einstein's "hole argument":

\[\text{diffeomorphisms} = \text{gauge symmetry of GR} \]

So what are the scales in Spin Foams?
Two different philosophies

1.) EPRL "fundamental":

Physical triangulation with EPRL as fundamental theory

Then what is continuum limit?

2.) GR "emergent"

Triangulation = technical tool
Microscopic theory yet unknown

Discreteness of space-time unclear!

either way: RG flow will be nontrivial, has to be computed!

[Vidotto, Rovelli '09]
Motivation: Why renormalization in spin foam models?

Renormalization without a length scale

Diffeomorphism symmetry

Easy examples

How to do it in practice: Approximation methods

Summary
Generalized spin foam models

Start with manifold \mathcal{M} and consider embedded, oriented 2-complexes $\Gamma \subset \mathcal{M}$ variables: group elements h_{ef} for $e \subset f$

$h_{ef} \in G$ compact Lie group

configuration space: $\mathcal{A}_\Gamma \simeq G^n$

integration measure: μ_Γ

observables: $\mathcal{O}_\Gamma \in C^0(\mathcal{A}_\Gamma)$

$$\langle \mathcal{O} \rangle_\Gamma = \int_{G^n} d\mu_\Gamma(h_{ef}) \mathcal{O}(h_{ef})$$

[Pfeiffer ‘01, Pfeiffer, Oeckl ’02, Kamiński, Kisielowski, Lewandowski ’09, Magliaro, Perini, ’10, BB, Dittrich, Hellmann, Kamiński ’12]
Generalized spin foam models

special cases: lattice gauge theory:

\[G = SU(N), \Gamma \quad \text{hypercubic lattice} \]

\[d\mu_\Gamma(h_{ef}) = dh_{ef} \prod_f e^{-S_{\text{Wilson}}[H_f]} \prod_e \int_G dg_e \prod_{f \subset e} \delta(g_e, h_{ef}) \]

EPRL spin foam model:

\[G = SU(2) \times SU(2), \Gamma \quad \text{dual to 4d triangulation} \]

\[d\mu_\Gamma(h_{ef}) = dh_{ef} \prod_f \delta(H_f) \int dg_{ve} \prod_{ef} E(g_{ve}^{-1}h_{ef}g_{we}) \]

choice of measure \(\mu_\Gamma \Leftrightarrow \) choice of theory
Continuum limit

Natural partial ordering of \(\Gamma \)'s (in semi-analytic category)

\[\Gamma \leq \Gamma' \]

Not every two \(\Gamma \)'s can be compared, but: for each two \(\Gamma, \Gamma' \) there is a finer one:

projection ("coarse graining map")

\[\pi_{\Gamma'\Gamma} : \mathcal{A}_{\Gamma'} \rightarrow \mathcal{A}_{\Gamma} \]

\[\pi_{\Gamma'\Gamma}([h_{e'f'}])_{ef} = \prod_{e' \subseteq e, f' \subseteq f} h_{e'f'} \]
Continuum limit

Consider all Γ (or sufficiently many) at the same time:

projective limit: \[\overline{A} := \lim_{\Gamma} A_{\Gamma} = \{ \{ a_{\Gamma} \}_{\Gamma} \mid a_{\Gamma} \in A_{\Gamma}, \pi_{\Gamma',\Gamma} a_{\Gamma'} = a_{\Gamma} \} \]

space of (generalized) continuum connections: compact Hausdorff space \[A \subset \overline{A} \]

condition for continuum measure μ on \overline{A}:

\[(\pi_{\Gamma',\Gamma})_* \mu_{\Gamma'} = \mu_{\Gamma} \]

„cylindrical consistency“

\[\{ \mu_{\Gamma} \}_{\Gamma} \to \mu \quad \text{Radon measure on } \overline{A} \]
Dictionary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{\mathcal{A}}$</td>
<td>quantum continuum connections</td>
</tr>
<tr>
<td>\mathcal{A}_Γ</td>
<td>are finite-dim „slices“ through $\overline{\mathcal{A}}$</td>
</tr>
<tr>
<td>Γ</td>
<td>provides cut-off: only finitely many holonomies</td>
</tr>
<tr>
<td>\Rightarrow</td>
<td>The two-complexes are the scales!</td>
</tr>
<tr>
<td>μ</td>
<td>continuum path integral measure („full theory“)</td>
</tr>
<tr>
<td>μ_Γ</td>
<td>partial path integral measure („effective theory“)</td>
</tr>
<tr>
<td>\mathcal{O}_Γ</td>
<td>observables at scale Γ</td>
</tr>
<tr>
<td>\Rightarrow</td>
<td>only finitely many holonomies measurable at a time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \mathcal{O}_\Gamma \rangle$</td>
<td>expectation values of observables:</td>
</tr>
<tr>
<td>$\pi_{\Gamma'\Gamma}$</td>
<td>coarse graining from scale Γ' to scale Γ</td>
</tr>
</tbody>
</table>
Dictionary ctd

cylindrical consistency: \((\pi_{\Gamma',\Gamma})_*\mu_{\Gamma'} = \mu_{\Gamma}\)

is precisely the idea of Wilsonian RG flow!

\[
d\mu_{\Gamma} = e^{-S[h_e, g_i(a) \mid a]} \, dh_e
\]

measure ("action") parametrised by parameters \(g_i(a)\) which depend on \(a\)

\[
e^{-S[h_e, g_i(a)]} = \int dh_{e'} \, e^{-S[h_{e'}, g_i(a')] \mid a'} \delta \left(h_e = \prod_{e' \subseteq e} h_{e'} \right)
\]
"scale" with background:

\(g_i(a) \)

convergence in the sense of sequence:

\(a \)

\(a' = \frac{a}{2} \)

"scale" without background:

\(\{ \mu_\Gamma \}_\Gamma \)

convergence in sense of filters:

\(\Gamma^{(1)} \)

\(\Gamma^{(2)} \)

\(\Gamma^{(3)} \)
• Motivation: Why renormalization in spin foam models?
• Renormalization without a length scale
• Diffeomorphism symmetry
• Easy examples
• How to do it in practice: Approximation methods
• Summary
Diffeomorphism group action

Because one considered embedded Γ

Diffeomorphism action $\phi : \mathcal{M} \rightarrow \mathcal{M}$
Acts on continuum configurations:

$$\phi : \overline{A} \rightarrow \overline{A}$$

invariance of continuum measure under ϕ

$$\Leftrightarrow \quad \phi_* \mu = \mu$$

equivalent to: $\langle \mathcal{O} \rangle_\Gamma = \langle \phi^* \mathcal{O} \rangle_{\phi(\Gamma)}$ for all Γ supporting \mathcal{O}
Diffeomorphism group action

Diffeomorphism-invariance of partial measures μ_Γ

$$\langle \mathcal{O} \rangle_\Gamma = \langle \phi^* \mathcal{O} \rangle_{\phi(\Gamma)}$$

Together with cylindrical consistency this is a very strong condition:

$$\mathcal{O}_1 = \mathcal{O} \circ \pi_{\Gamma'\Gamma}$$
$$\mathcal{O}_2 = \phi(\mathcal{O}) \circ \pi_{\Gamma'\phi(\Gamma)}$$

$$\langle \mathcal{O}_1 \rangle_{\Gamma'} \overset{1}{=} \langle \mathcal{O}_2 \rangle_{\Gamma'}$$

see talk by Etera Livine!
Hamiltonian formulation

Manifold with boundary, e.g.
\[\partial \mathcal{M} = \overline{\Sigma_1} \sqcup \Sigma_2 \]
boundary graph \[\partial \Gamma = \overline{\gamma_1} \sqcup \gamma_2 \]
boundary holonomies \[\mathcal{B}_\gamma = G^m_\gamma \]
kinematical boundary Hilbert space:
\[\mathcal{H}_\gamma = L^2(\mathcal{B}_\gamma) \]
boundary observables: \[\psi \in C^0(\mathcal{B}_\gamma) \]
provides physical inner product in sense of rigging map in RAQ

\[\langle \psi_1 \mid \psi_2 \rangle_{\Gamma,\text{phys}} := \langle \overline{\psi_1} \otimes \psi_2 \rangle_{\Gamma} \]
cylindrical consistency of \[\langle \cdot \rangle_{\Gamma} \] guarantees extension to continuum boundary HS

\[\mathcal{H}_\Sigma = \lim_{\gamma \to \infty} \mathcal{H}_\gamma \]
LQG kinematical Hilbert space (for EPRL model)!

[Kamiński, Kisielowski, Lewandowski, Puchta '11, Bahr, Hellmann, Kamiński, Lewandowski, '12]
[Ashtekar et al '95, Marolf, Guillini '98, Thiemann '01]
[Kamiński, Kisielowski, Lewandowski] '09
• Motivation: Why renormalization in spin foam models?
• Renormalization without a length scale
• Diffeomorphism symmetry
• Easy examples
• How to do it in practice: Approximation methods
• Summary
Example:

Near trivial example: \[\dim \mathcal{M} = 2, \quad G = U(1) \quad \mathcal{A}_\Gamma = U(1)^E \]

„charge-network functions“ \[\mathcal{O}(h_e) = \prod_e h_e^{m_e} \]

\[
\langle \mathcal{O} \rangle_\Gamma := \frac{1}{Z} \int_{U(1)^E} dh_e \mathcal{O}(h_e) \prod_f \sum_{n_f \in \mathbb{Z}} \exp \left(-n_f^2 a_f / 2 + i \theta_f n_f \right) \left(\prod_{e \in f} h_e^{[e,f]} \right)^{n_f} \\
= \int_{U(1)^E} d\mu_{\Gamma,\overline{\Gamma}}(h_e) \mathcal{O}(h_e) \quad a_f > 0, \quad \theta_f \in \mathbb{R}
\]

coarse graining map:

\[
\pi_{\Gamma' \Gamma}(h_e) = (\cdots, h_{e_1} h_{e_2} h_{e_3}^{-1}, \cdots) = h_{e'}
\]
Example:

RG equations:

\[
\alpha_f^\Gamma = \sum_{f' \subset f} \alpha_{f'}^\Gamma
\]
\[
\theta_f^\Gamma = \sum_{f' \subset f} [f', f] \theta_{f'}^\Gamma
\]

Obvious solution:

\[
g \in \text{Sym}^2 T^* M \quad \text{(area) metric}
\]
\[
\theta \in \Omega^2(M) \quad \text{2-form}
\]

\[
\alpha_f^\Gamma = \int_f \text{dvol}_g \quad \theta_f^\Gamma = \int_f \theta
\]

Limit solutions:

\[
\theta = 0 \quad \text{2d Yang-Mills on background metric } g
\]

\[
g \to 0 \quad \int_A DA \delta(F[A] - \theta)
\]
Example:

Diffeomorphism-invariance:

\[
\langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{\Gamma} = \langle \phi_* \mathcal{O} \rangle_{\phi(\Gamma)} = \langle \phi_* \mathcal{O} \rangle
\]

\[
\Rightarrow \quad \langle \mathcal{O} \circ \pi_{\Gamma'} \Gamma' \rangle_{\Gamma'} = \langle \phi_* \mathcal{O} \circ \pi_{\Gamma'} \phi(\Gamma) \rangle_{\Gamma'}
\]

\[
\Rightarrow \quad a_{f_1} + a_f + a_{f_2} = a_{f_1} - a_f + a_{f_2} \quad \theta_{f_1} + \theta_f + \theta_{f_2} = \theta_{f_1} - \theta_f + \theta_{f_2}
\]

Only solutions: \(g \to 0, \infty \) \quad \theta = 0

(limits exist as measures on \(\overline{\mathcal{A}} \))

Could have been guessed from \(\phi_* \mu^{(g,\theta)} = \mu^{(\phi_* g, \phi_* \theta)} \)
Example:

Space of solutions to GR equations:

\[
d\mu^{(g,\theta)} = \frac{1}{Z} \prod_e dh_e \prod_f \sum_{n_f \in \mathbb{Z}} \exp \left(-n_f^2 a_f / 2 + i\theta_f n_f \right) \left(\prod_{e \subset f} h_e^{[e,f]} \right)^{n_f}
\]

\[
a_f = \int_f d\text{vol}_g \quad \theta_f = \int_f \theta
\]
Motivation: Why renormalization in spin foam models?

Renormalization without a length scale

Diffeomorphism symmetry

Easy examples

How to do it in practice: Approximation methods

Summary
Approximations:

RG flow equations: conditions of cylindrical consistency of partial measures

\[\langle \mathcal{O} \rangle_{\Gamma} = \langle \mathcal{O} \circ \pi_{\Gamma' \Gamma} \rangle_{\Gamma'} \]

for all \(\Gamma \leq \Gamma' \) and all \(\mathcal{O} \in C^0(A_{\Gamma}) \)

\[\Rightarrow \text{In most cases impossible to check.} \]

Possible approximations:

- Don't check for all 2-complexes \(\Gamma \), just for subset (e.g. lattices, or hose dual to triangulations)

- Don't check on all observables \(\mathcal{O} \), just on few interesting ones

- Search for solutions in subset of all measures, e.g.

\[d\mu(h_{ef}) = \prod_{ef} dh_{ef} \exp \left(-S^{(g_i)}[h_{ef}] \right) \]

truncation to few parameters \(g_i \) and minimize

\[\sum_n c_n \| \langle \mathcal{O}_n \rangle_{\tilde{g}} - \langle \mathcal{O}_n \circ \pi_{\Gamma' \Gamma} \rangle_{\tilde{g}'} \|^2 \]
Example 1:

Use finite group:

\[G = S_3 = \{1, (12), (13), (23), (123), (132)\} \]

has three irreps: trivial \(0_{S_3}\), sign \(1_{S_3}\) and \(2_{S_3}\)

\[
\rho_{2_{S_3}}(12) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \rho_{2_{S_3}}(123) = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}
\]

\(c = \cos(2\pi/3), \quad s = \sin(2\pi/3)\)

Truncation of measure space (mimics EPRL model):

\[
d\mu_\Gamma = dh_{ef}\prod_f \delta(H_f) \int dg_{ve} \prod_{e \subset f} \left(e_0 + e_1 \rho_{1_{S_3}}(\tilde{h}_{ef}) + e_{01} \rho_{1_{S_3}}(\tilde{h}_{ef})^{\uparrow\uparrow} + e_{02} \rho_{1_{S_3}}(\tilde{h}_{ef})^{\downarrow\downarrow} \right)
\]

\[\tilde{h}_{ef} = g_{ve}^{-1} h_{ef} g_{we}\]
Example 1:

3d: hierarchical lattics made from tetrahedra, only consider observables at boundary
RG step:
Example 1:

Numerical flow:

I: S_3 BF theory
II: AL measure
III: \mathbb{Z}_2 BF theory
IV: nontrivial
Example 2:

\[\dim \mathcal{M} = 2, \quad G = U(1) \quad \mathcal{A}_\Gamma = U(1)^E \]

\[d\mu^{(t,\lambda)} := \frac{1}{Z} d^E h_e \prod_f \mathcal{K}_f(H_f) \exp \left(-\lambda \sin^4(H_f) \right) \]

\[t > 0, \ \lambda \in \mathbb{R} \]
Example 2:
• Motivation: Why renormalization in spin foam models?
• Renormalization without a length scale
• Diffeomorphism symmetry
• Easy examples
• How to do it in practice: Approximation methods
• Summary
Summary:

- Quantum GR is definitely nonlinear and is a field theory
 ⇒ Renormalization (in Wilsonian sense) needs to be understood in spin foam models.

- Scales are a way of creating a hierarchy of d.o.f.
 ⇒ embedded 2-complexes provide a natural hierarchy
 ⇒ RG flow along poset, rather than „length scale“

- RG equations ⇔ cylindrical consistency from measure theory

- Although setup is background-independent, a solution not necessarily is!
 ⇒ Diffeomorphism-invariance strong condition!

- Approximation methods are being developed, and yield first numerical results
 crf work by Riello, Rovelli for analytical results!
Open questions:

- How to incorporate Lorentzian signature? (non-compact groups)
- Other interesting diff-invariant models (lower-dimensional, Seiberg-Witten?)
- How good are approximation methods (e.g. compared to Migdal-Kadanoff)?
- Interesting coupling constants for QGR: R-terms, etc.
- Connection to canonical formulation: constraints from RG flow?
- Asymptotic safety? Renormalizability?
Naïve hope for the future:

EPRL (maybe with αR^2-corrections?), depending on few parameters $\kappa, \gamma, \Lambda, \alpha$

Form invariance: NGFP + no nonrenormalizability

crf talks by Saueressig, Litim!