Quantum Reduced Loop Gravity

Emanuele Alesci
Instytut Fizyki Teoretycznej
Warsaw University, Poland

In collaboration with F. Cianfrani

FFP14
18th July 2014
Look at the inhomogeneous line element in the BKL conjecture Belinski-Khalatnikov-Lifshitz ’70:

\[ds^2 = N^2(t)dt^2 - e^{2\alpha(t,x)}(e^{2\beta(t,x)})_{ij} \omega^i \otimes \omega^j \]

\(\alpha \) Describes the Volume
\(\beta \) (diagonal matrix, \(\text{Tr} \ \beta = 0 \)) Describes local anisotropies
\(\omega \) one forms corresponding to an homogeneous Bianchi model

GOAL:
find a quantum symmetry reduction of LQG compatible with this line element

If we remove the spatial dependence from \(\alpha \) and \(\beta \), we can recover generic Bianchi models
GOAL:
Implement on the SU(2) Kinematical Hilbert space of LQG the classical reduction:

\[
A^i_a = c_i(t, x)\omega^i_a \\
E^a_i = p^i(t, x)\omega^a_i
\]

\[
\{p^i(x, t), c_j(y, t)\} = 8\pi G \gamma \delta^i_j \delta^3(x - y)
\]

First truncation: we restrict the holonomies to curves along edges \(e_i\) parallel to fiducial \(\omega^a_i\) vectors.

The SU(2) classical holonomies associated to the reduced variables are

\[
R_{h e_i}^j = P(e^{i \int_{e_i} c^i \omega^i_a dx^a(s)\tau_i})
\]

\[
R_{h e_i}^j = \exp (i\alpha^i \tau_i)
\]

Holonomy belong to the U(1) subgroup generated by \(\tau_i\)
Consider fluxes across surfaces $x^a(u,v)$ with normal vectors parallel to the fiducial ones.

The classical reduction implies

$$E_i(S^k) = \int E_i^a \frac{1}{\omega} \omega_a^k dudv = \delta_i^k \int p_i \frac{1}{\omega} dudv$$

For consistency only the diagonal part of the matrix $E_i(S^j)$ is non vanishing.

Second class with the Gauss constraint

$$\chi_i = \sum_{l,k} \epsilon_{il}^k E_k(S^l) = 0$$
How to implement the reduction on the holonomies and consistently impose $\chi_i = 0$?

Strategy: Mimic the spinfoam procedure

Impose the **second class constraint weakly** to find a “Physical Hilbert space”

Engle, Pereira, Rovelli, Livine ‘07- ‘08

Imposing a Master constraint strongly on the SU(2) holonomies:

\[\chi^2 h^j_{e_i} = (8\pi \gamma l_P^2)^2 (\tau^2 - \tau_i \tau_i) h^j_{e_i} = 0 \]

To solve use SU(2) coherent states

\[|j, \vec{u} > = D^j(\vec{u}) |j, j > = \sum_m |j, m > D^j(\vec{u})_{m j} \]

Reduced basis Elements

\[\langle j, \vec{e}_i | D^j (g) | j, \vec{e}_i \rangle \]
There is a natural way of embedding $U(1)$ cylindrical functions in $SU(2)$ ones:

Projected spinnetworks (Alexandrov, Livine ’02) with the Dupuis-Livine map (Dupuis Livine ’10)

These $SU(2)$ functions have the remarkable property that they are completely determined by their restriction to their $U(1)$ subgroup

$$\tilde{\psi}(g)|_{U(1)} = \psi$$

If we consider projected functions defined over the edge e_i choosing the subgroup $U(1)_i$ as the one generated by τ_i

$$\tilde{\psi}(g)_{e_i} = \sum_{n_i} iD^j_{m=n_i r=n_i} (g) \psi^{n_i}_{e_i}$$

The Master constraint equation selects the degree of the map:

$$|n_i| = j(n)$$

The strong quadratic condition implies the linear one weakly

This is how we find in the $SU(2)$ quantum theory the classical reduction
If we define a Projector P_{χ} on Physical reduced states:

The projector P_{χ} acting on ψ_{Γ} SU(2) cylindrical functions defined on general Graphs Γ:

- **Restrict the Graphs** to be part of a cubical lattice

- **Select the states** belonging to the SU(2) subspace where our constraint conditions hold weakly:

$$\tilde{\psi}_i(h) = \sum_{n=-\infty}^{+\infty} \psi^n iD_{n\bar{n}}^{i(n)}(h)$$

What is the fate of the GR constraints?
The reduced states will be of the form:

\[
< h|\Gamma, j_v, x_v >_R = \prod_{v \in \Gamma} \prod_{e \in \Gamma} < j_i, x|j_i, \bar{u}_i > \cdot iD^{j_e} (h_e)_{ji,j_i}
\]

Projection on the intertwiner base of the Livine Speziale Intertwiner: Livine, Speziale ‘07

\[
|j_i, \bar{u}_i > = |j_1, \cdots, j_i, \bar{u}_1, \cdots, \bar{u}_i > = \int dg \prod_i |j_i, \bar{u}_i >
\]

SU(2) intertwiner projected on coherent states: Reduced intertwiner

SU(2) holonomy Projected on coherent states Reduced holonomy
Different Reduced SU(2) intertwiners: inhomogeneities

Different Spin labels: Anisotropies

Homogeneous and anisotropic sector

Homogeneous and Isotropic sector

The Inhomogenous sector
On the reduced space:

Reduced s-knot states

Equivalence class of graphs that preserve the cellular structure:
The regularized Euclidean constraint in the full theory reads:

\[H^m[N] := \frac{N(n)}{N_m^2} \epsilon^{ijk} \text{Tr} \left[h^{(m)}_{\alpha ij} h^{(m)}_{sk} \{ h^{(m)}_{sk}^{-1}, V \} \right] \]

We regularize à la Thiemann, but using only elements of the reduced space:

\[RH^m[N] := \frac{N(n)}{N_m^2} \epsilon^{ijk} \text{Tr} \left[R h^{(m)}_{\alpha ij} R h^{(m)}_{sk} \{ R h^{(m)}_{sk}^{-1}, V \} \right] \]

Graph-Changing or non-Graph changing version allowed
Action of the operator \((\text{Graph-Changing})\)
on a tri-valent node:

\[
R H^m [N] = \sum_{\text{Permutations}} \left(A_{ij}(j_i, j_j, j_k, m) + A_{ki}(j_i, j_j, j_k, m) \right)
\]

Computed with recoupling theory adapted to the reduced case:
Similar to computation in full theory

Alesci Liegener Thiemann Zipfel
\[A_{ij}(j_i, j_j, j_k, m) = \]

Remarkably this expression for \(m=1 \) and large values simplify to

\[\sqrt{j_1 j_2 j_3 + 1} \left[\{ j_i + m j_j \} \{ j_k + m j_i \} - \{ j_j + m j_i \} \{ j_k + m j_k \} \right] \]

Non trivial solutions to pure gravity
How general is this framework?

Observation: Any 3-metric can be taken to diagonal form by a 3d diffeomorphism, with a residual gauge freedom (reduced diffeomorphisms)

Restriction to cubic lattice can be seen as a gauge fixing at the quantum level of the diffeomorphisms on the 3-metric Alesci, Cianfrani, Rovelli

\[\eta_{x}^{km} = \delta^{ij} E_{i}(S_{x}^{k}) E_{j}(S_{x}^{m}) = 0, \quad k \neq m, \quad \forall x \in \Sigma \]

\[\langle \psi|\eta_{x}^{km}|\phi \rangle = 0, \quad k \neq m, \quad \forall x \in \Sigma \]

Weak solution: SU(2) spinnetworks, restricted to reduced graphs with Livine-Speziale intertwiners, synchronized with the frame that diagonalize the metric.

Loop Quantum Gravity in diagonal triad gauge?

Yes but non trivial Hamiltonian (the evolution may not preserve the gauge; in the BKL hypotesis it does) in progress
Semiclassical analysis

\[\Psi_{\Gamma,H_l}(h_l) = \int \prod_n d g_n \prod_l K_{\alpha_l}(h_l, g_{s(l)} H_l g_{t(l)}^{-1}) \]

\[H_l = h_l \exp(i \frac{\alpha_l E_l}{8\pi G \hbar c}) \]

Heat Kernel coherent states

SL(2,C) element coding classical data

Hall, Thiemann, Winkler, Sahlmann, Bahr

\[\Psi_{H_l}(h_l) = \sum_{j_l,i_n} \Psi_{H_l}(j_l, i_n) \Psi_{j_l,i_n}(h_l) \]

intertwiner base
Large distance asymptotic behaviour Bianchi Magliaro Perini

\[
\Psi_{H_l}(h_l) \sim \sum_{j_{l,i_n}} \prod_{l} e^{-\frac{(j_l-j_l^0)^2}{2\sigma_l^2}} e^{-i\xi_l j_l} \prod_{n} \Phi_{i_n} \Psi_{j_l,i_n}(h_l)
\]

- Codes the intrinsic geometry
- Codes the extrinsic curvature
- Livine-Speziale Intertwiners

\[
\dot{j}_0 = \frac{|E|}{8\pi G \hbar \gamma}
\]

\[
\dot{\xi} \sim K = c
\]
Semiclassical states in QRLG

Complexifier:

\[H_i' = h_i' \exp \left(\frac{\alpha}{8\pi\gamma l_P^2} E_i' \tau_i \right) \]

\[E_i' \sim p_i \delta_i^2 \]

Area of the smearing surface

Link length

Reduced holonomy:

\[h_i' = e^{i\theta \tau_i} \in U(1)_i \]

\[\theta \sim \pm \epsilon_i c_i \]

Sum over magnetic indexes

Heat-Kernel:

\[K_\alpha(h_l, h_i') = \sum_{m_l = -\infty}^{+\infty} (2j_l + 1)e^{-j_l(j_l+1)\frac{\alpha}{2}} lD_{m_l m_l}(h_l^{-1}h_i') \]

Semiclassical state on the link:

\[\psi_{H_i'}^\alpha(h_l) = K_\alpha(h_l, H_i') = \sum_{m_l = -\infty}^{\infty} \psi_{H_i'}^\alpha(m_l) lD_{m_l m_l}(h_l^{-1}) \]
\[\left| \Psi_{H, n^z} \right\rangle_R = R\Psi_{H_1} + R\Psi_{H_2} + R\Psi_{H_3} \approx \text{Gaussians} \]
By a saddle point expansion around the centers of the Gaussians:

\[\alpha = \frac{1}{(\bar{j})^k} \quad k > 1 \]

\[\langle \Psi_H \, n^z | R \hat{H}^m_{E_0} | \Psi_H \, n^z \rangle \approx -N(n)C(m)(8\pi \gamma l_P^2)^{3/2} \]

\[\sum_{\tilde{m}} \sum_{\mu = \pm m} \sum_{\mu_x, \mu_y = \pm m} \sum_{\mu'_x, \mu'_y = \pm m} \sqrt{\tilde{j}_x \tilde{j}_y (\tilde{j}_z + \mu)} \, s(\mu) C_{mm}^{\mu m} \tilde{m} \tilde{m}_0 \]

Classical values

\[E_i' = 8\pi \gamma l_P^2 \tilde{j}_i \sim \bar{p}^i \delta_i \]
Finally, the expectation value of the scalar constraint is:

\[
\langle \sqrt{R \hat{H}^{1/2}} \rangle_n \approx \frac{1}{\gamma^2} N(n) V(n) \left(\sqrt{\frac{\bar{p}^x \bar{p}^y}{\bar{p}^z}} \sin (\epsilon_{l_x} \bar{c}_x) \sin (\epsilon_{l_y} \bar{c}_y) \epsilon_{l_x} \epsilon_{l_y} + \right.
\]

\[
\left. + \sqrt{\frac{\bar{p}^y \bar{p}^z}{\bar{p}^x}} \sin (\epsilon_{l_y} \bar{c}_y) \sin (\epsilon_{l_z} \bar{c}_z) \epsilon_{l_y} \epsilon_{l_z} + \sqrt{\frac{\bar{p}^z \bar{p}^x}{\bar{p}^y}} \sin (\epsilon_{l_z} \bar{c}_z) \sin (\epsilon_{l_x} \bar{c}_x) \epsilon_{l_z} \epsilon_{l_x} \right)
\]

This expression coincides with the analogous one found in LQC if \(\epsilon_{l_i} = \bar{\mu}_i \).

Sending the regulator to zero

\[
\sqrt{\frac{p^1 p^2}{p^3} c_1 c_2} + \sqrt{\frac{p^2 p^3}{p^1} c_2 c_3} + \sqrt{\frac{p^3 p^1}{p^2} c_3 c_1}
\]

Ashtekar, Wilson-Ewing, Martin-Benito, Mena-Marugan, Pawlowski

Classical Bianchi I Hamiltonian
Add matter: Big Bounce? QFT on quantum spacetime?
Work in progress *Alesci Bilski Cianfrani*

- Study the Physical Hilbert space

- Link to LQC and LQC phenomenology

- Link to Spinfoam Cosmology
 Bianchi Krajewski Martin-Benito Rennert Rovelli Sloan Vidotto Wilson-Ewing

- Link to GFT Cosmology
 Gielen Oriti Sindoni

- Full theory in a gauge?
- Test the new Hamiltonian: *Alesci Assanioussi Lewandowski*

Arena for the canonical theory:
AQG, Master constraint, deparametrized theories.. *Computable!*

THANK YOU